

NAVAL WEAPONS STATION SEAL BEACH SEAL BEACH, CALIFORNIA INSTALLATION RESTORATION PROGRAM FINAL NATIONAL WILDLIFE REFUGE STUDY REPORT

5 April 1995

Revision 0

PREPARED BY: Southwest Division, Naval Facilities Engineering Command 1220 Pacific Highway San Diego, California 92132-5190

THROUGH:
CONTRACT #N68711-89-D-9296
CTO #0237
DOCUMENT CONTROL NO:
CLE-C01-01F237-S2-0001

WITH: decobe lingingering Group Inc. 401 West A.Street, Suite 1905 San Diego, California 92101

In attendation with:
Insurrentessal Technology Corporation
CHMM Hill.

blank page

NAVAL WEAPONS STATION SEAL BEACH SEAL BEACH, CALIFORNIA INSTALLATION RESTORATION PROGRAM FINAL NATIONAL WILDLIFE REFUGE STUDY REPORT

Revision 0

PREPARED BY

Southwest Division, Naval Facilities Engineering Command 1220 Pacific Highway San Diego, California 92132-5190

THROUGH: CONTRACT #N58711-89-D-9296

CTO #0237 DOCUMENT CONTROL NO: CLE-C01-01F237-\$2-0001

WITH:

Jacoba Engineering Group Inc. 401 West A Street, Suite 1905 San Diego, California 92101

In association with: International Technology Corporation CH2M HILL Kathy Freas

CLEAN Project Manager

CH2M HILL, Inc.

Michael Concannon

CLEAN Technical Reviewer

CH2M HILL, Inc.

Page

TABLE OF CONTENTS

EVEO	TIME OF	18 48 4 A PDV		
			ES-1	
1.0	INTRO	DUCTION .		
	1.1	Authoriza	tion	
	1.2	Backgrou	ınd 1-1	
	1.3	Purpose	of Investigation	
2.0	GENE	RAL APPRO	ACH	
	2.1	Phased S	Study	
	2.2	Processes and Components of the Tidal Saltmarsh System		
	٤.٤		•	
		2.2.1	Physical Processes	
		2.2.2	Physical and Biological Components 2-5	
		2.2.3	Other Studies	
3.0	METHO	DDS		
	3.1	Watershe	d and Land Use Characterization	
		3.1.1	Data Collection 3-2	
		3.1.2	Overlay Mapping	
		3.1.3	Data Analysis	
	3.2	Physical C	Oceanography Evaluation	
		3.2.1	Data Collection	
		3.2.2	Computer Modeling	

			Page
		3.2.3	Sediment Transport Evaluation
	3.3	Hydroged	ological Evaluation 3-13
	3.4	Sediment	Chemical Evaluation
		3.4.1	Sample Collection
		3.4.2	Sample Analysis 3-17
		3.4.3	Evaluation of Sediment Chemical Analyses 3-19
	3.5	Biological	Chemical Evaluation
		3.5.1	Sample Collection
		3.5.2	Analytical Methods
		3.5.3	Statistical Methods
4.0	RESUL	.TS	
	4.1	Watershed	d and Land Use Characterization 4-1
		4.1.1	Surface Water Runoff 4-1
		4.1.2	Comparable Location Criteria and Evaluation 4-2
	4.2	Physical C	Oceanography Evaluation
		4.2.1	Sediment Transport Analysis 4-11
		4.2.2	Deposition/ Erosion Analysis 4-11
		4.2.3	Hydrogeologic Analysis
	4.3	Sediment	Chemical Evaluation 4-19
		4.3.1	Inorganics
		4.3.2	Organics
	4.4	Biological	Chemical Evaluation

			Page
		4.4.1	Analysis Results
5.0	DISCUS	SSION	
	5.1	Impacts of	the POLB Ponds on Sediment Deposition and
		Erosion P	atterns
	5.2	Impacts of	Contaminants on NWR Endangered Species 5-4
		5.2.1	Chemicals of Potential Concern 5-4
6.0	CONCL	USIONS AND	RECOMMENDATIONS 6-1
	6.1	Conclusions	s 6-1
		6.1.1	Spatial Pattern of Contamination 6-1
		6.1.2	Potential for Adverse Effects to NWR Endangered
			Species
	6.2	Recommend	dations 6-5
7.0	REFERE	NCES	7-1
TABLES			
3-1	Summar	y of Samplin	g Times and Species Collected During the Seal Beach
	NWR S	Study	
3-2		-	mits for Chemicals in Biological Samples 3-29

		Page
4-1	Concentrations of Metals and Sulfide and Total Organic Carbon	
	Carbon in Sediments from Seal Beach NWR	. 4-21
4-2	Comparison of Sediment Screening Levels Developed by NOAA and the	
	State of Florida (1992)	. 4-23
4-3	Regional Background Concentrations of Metals in Offshore	
	Sediments	. 4-25
4-4	Ratios of Aluminum Content to Priority Pollutant Metals	. 4-27
4-5	Concentrations of Organic Constituents in Sediments from	
	Seal Beach NWR	. 4-31
4-6	TOC-Normalized Concentrations of Organic Constituents on	
	Sediment from Seal Beach NWR	4-39
4-7	Average Moisture and Lipid Content of Seal Beach NWR Invertebrates	
	and Fish Sampled for Analysis	4-45
4-8	Frequency of Detection and Maximum Concentration of Chemicals	
	in Seal Beach NWR Invertebrates and Algae	4-49
4-9	Geometric Mean Concentrations of Contaminants in Seal Beach	
	NWR Invertebrates	4-53
4-10	Biota Sampling Locations Where Highest Concentrations of	
	Contaminants of Concern were Found in Commonly Collected Species	4-57
4-11	Frequency of Detection and Maximum Concentration of Contaminants	
	in Seal Beach NWR Fish	4-59
4-12	Geometric Mean Concentrations of Contaminants in Seal Beach	
	NIMP Figh	4-63

	Page
4-13	Ranking of EC ₅₀ Values for Sediments in Bioassays 4-69
4-14	Relationship Between Toxicity Measured by Microtox® and
	Various Analytes 4-71
4-15	Inorganic and Organic Chemicals Found in Least Tern Eggs
	Salvaged at Seal Beach NWR 4-73
5-1	Assessment Values for Concentrations of Inorganics (mg/kg) in
	Bird Diets
5-2	Toxicity Assessment Values (NOELs) and Ratios to Observed Values in Food
	Organisms
5-3	Geometric Mean Concentrations (mg/kg wet weight), 85th Percentile
	(for Inorganics) and Maximum Concentrations Found Nationwide in
	Freshwater Fish by the National Contaminant Biomonitoring
	Program, 1984
5-4	NAS Guideline Levels for Toxic Chemicals in Whole Fish 5-25
5-5	Elevated Data Levels (EDL 85s) for Inorganic and Organic Chemicals
	in the Toxic Substances Monitoring Program (TSMP) and California
	State Mussel Watch (CSMW) 5-27
5-6	Comparison of Mercury and DDE Concentrations in Least Tern
	Eggs Salvaged from Nesting Colonies at Seal Beach NWR, San Diego Bay,
	and San Francisco Bay 5-43
5-7	California State Mussel Watch Data for the Anaheim Bay Area 5-49
6-1	Chemicals of Concern NWS Seal Beach, NWR Study Report 6-2

Page

FIGURES

1-1	Location and Vicinity Map1-3
1-2	Tidal Saltmarsh at Seal Beach NWR 1-5
3-1	Tidal Monitoring Stations at Seal Beach NWR
3-2	Sediment and Biota Sample Locations at Seal Beach NWR 3-15
4-1	Watershed Subbasin Boundaries and Major Drainage Channels for
	Runoff into Anaheim Bay 4-3
4-2	Discharge Points for Runoff from Anaheim Bay Watershed 4-5
4-3	Sediment Transport Potential of Seal Beach NWR 4-13
4-4	Sediment Transport Potential in the East, Central, & West Arms of
	Seal Beach NWR Pre-POLB Pond Conditions 4-15
5-1	Locations and Sampling Times When Topsmelt Were Collected,
	1992 and 1993
5-2	Locations of Installation Restoration Program Sites at Seal
	Beach NWR
Append	lix A
	NWS Seal Beach Watershed and Land Use Characterization
Append	ix B
	Evaluation of Sediment Transport in the Seal Beach National Wildlife Refuge
Append	ix C
	Evaluation of Seal Beach National Wildlife Refuge Sediment Chemistry Data
Append	ix D
	Environmental Contaminants in the Food Chain, Naval Weapons Station Seal
	Beach

LIST OF ACRONYMS

AA atomic absorption

CDFG California Department of Fish and Game

cd/kg Cadmium per kilogram

CDWR California Department of Water Resources

CLEAN Comprehensive Long-term Environmental Action Navy

cm/sec centimeters per second

COC chemical of concern

COPCs chemical of potential concern

CRDL Contract-Required Detection Limits

Cr/kg Chromium per kilogram

CSMW California State Mussel Watch

CTO Contract Task Order

DTSC Department of Toxic Substances Control

EcoRA Ecological Risk Assessment

DWR Department of Water Resources

EDL elevated data level

EIS Environmental Impact Statement

ERM effects range median

EPA U.S. Environmental Protection Agency

ERL effects range low

FS feasibility study

ft/sec feet per second

g grams

GC/MS gas chromatography/mass spectrometry

GERG Geochemical and Environmental Research Group

HLW Higher Low Water

IAG Interagency Agreement

IAS Initial Assessment Study

ICP inductively coupled plasma

IRP Installation Restoration Program

Jacobs Engineering Group Inc.

LLW Lower Low Water

m meters

MDL method detection limit

mg/kg milligrams per kilogram

MHHW Mean Higher High Water

MHW Mean High Water

ml milliliter

MLLW Mean Lower Low Water

MLW Mean Low Water

mm millimeters

MSD matrix-spike duplicate

msi mean sea level

MTL maximum tolerable level

NAS National Academy of Sciences

NCBP National Contaminant Biomonitoring Program

ng/g nanograms per gram

NMFS National Marine Fisheries Service

NOAA National Oceanic and Atmospheric Administration

NOEL no-observed effects level

NOS National Oceanic Service

NWR National Wildlife Refuge

NWS Naval Weapons Station

OCEMA Orange County Environmental Management Agency

OU operable unit

PACF Patuxent Analytical Control Facility

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

PEL probable effects level

POLB Port of Long Beach

ppm parts per million

QA/QC quality assurance/quality control

RI remedial investigation

ROD Record of Decision

RPD relative percent difference

RPM Remedial Project Manager

RWQCB Regional Water Quality Control Board, Santa Ana

SCS Soil Conservation Service

SI site investigation

SOP standard operating procedure

SWDIV Southwest Division, Naval Facilities Engineering

Command

TOC total organic carbon

TPH total petroleum hydrocarbon

TSMP Toxic Substances Monitoring Program

USDA U.S. Department of Agriculture

U.S. Food and Drug Administration

USFWS U.S. Fish and Wildlife Service

USGS U.S. Geological Survey

EXECUTIVE SUMMARY

The Seal Beach National Wildlife Refuge Study was conducted to assess the effects of operations at Naval Weapons Station (NWS) Seal Beach on the biota of the tidal saltmarsh at Seal Beach National Wildlife Refuge (NWR). The study focused on the potential bioaccumulation of chemicals in species that are the primary food items of the California Least Tern and the Light-Footed Clapper Rail, both of which are listed as endangered by the U.S. Fish and Wildlife Service (USFWS) and the California Department of Fish and Game (CDFG). These species are high on the food chain, thus could be most likely to be affected by bioaccumulation of chemicals. Chemical concentrations in sediments and the primary food species of the least tern and the clapper rail were assessed at locations throughout the NWR to evaluate the types and distribution of potential contaminants in the NWR. The Anaheim Bay watershed was characterized to provide information on types and potential sources of chemicals that could be contributed to the NWR from sources other than NWS Seal Beach. Sediment transport in the NWR tidal saltmarsh was assessed to evaluate patterns of erosion and deposition that influence the movement and distribution of potentially contaminated sediments within the NWR, as well as the potential for contamination to enter the NWR from the Anaheim Bay system. Habits of the organisms that are the primary food items of the clapper rail cause them to be in contact with and to ingest sediments. Contaminated sediments, therefore, could cause bioaccumulation in food organisms and in the birds that feed on them.

Revision: 0

Results of sediment transport evaluation indicate that construction of four ponds by Port

of Long Beach (POLB) at the landward ends of two of the three main channels of the

NWR tidal saltmarsh has significantly changed sediment erosion and deposition patterns

in the NWR. This has resulted from an increase in the volume and velocity of water

flowing into the tidal channels of the NWR from the Anaheim Bay system during each

tidal cycle. These changes are expected to result in a redistribution of sediments in the

NWR over an unknown period of time and can affect the spatial pattern of potential

contaminants in the NWR. Areas not prone to erosion prior to construction of the POLB

ponds now may experience erosion, while other areas are expected to undergo

deposition. In general, increased erosion is expected in the east and west main tidal

channels of the NWR with increased deposition in the POLB ponds at the ends of those

channels.

Chemicals found in food species in concentrations sufficient to potentially produce

sublethal effects in the least tern and clapper rail included cadmium, chromium, copper,

lead, nickel, zinc, DDE, and PCBs. While spatial patterns of chemical concentrations in

sediments and food species were not identical, two general areas in the NWR where

levels of some chemicals in sediments and food species were consistently elevated

were the northwest and southeast areas of the NWR. The area of concern in the

northwest included POLB ponds 1 and 2, and sample locations seaward of those

ponds. The area of concern in the southeast included POLB pond 3 and sample

locations seaward of that pond. No relationship between the locations of Remedial

Investigation sites within or near the NWR and the distribution of contaminants in

sediments or food species was apparent from the NWR Study results.

ES-2

SCO100217D9.WP5\95\CF

Revision: 0

Observed levels of contaminants in food species in the POLB ponds and tidal channels

in the NWR do not warrant a concern for immediate remediation. In light of the potential

for ongoing erosion and deposition, particularly in the POLB ponds that are intended to

provide habitat for the least tern and the clapper rail, monitoring to assess possible

further bioaccumulation of chemicals in the northwest and southeast areas of the NWR

is recommended. Initially, recommended monitoring would be conducted annually and

would include collection and chemical analysis of replicate samples of sediments and

food species of the least tern and clapper rail from POLB ponds and nearby sample

locations. Timing, location, and the interval for monitoring could be adjusted in

response to results of each successive monitoring event.

Responsibility for this monitoring effort should be determined based on conditions

included in the Memorandum of Understanding signed by the Navy, USFWS, POLB,

CDFG, and the National Marine Fisheries Service (NMFS), which provided guidance for

development of the POLB mitigation ponds in the NWR.

The Navy has initiated a Stormwater Monitoring Program to assess quality of surface

water runoff into the NWR. The results of this monitoring should be evaluated with

respect to results of this monitoring should be evaluated with respect to results of

sediment and biota monitoring in the NWR.

The NWR Study Report, in combination with the Stormwater Monitoring Program and

continued coordination with the USFWS, satisfies the Navy's responsibility to evaluate

effects of the NWS on the NWR.

SCO100217D9.WP5\95\CF

ES-3

blank page

ersion: Final Revision: 0

1.0 INTRODUCTION

1.1 Authorization

On 20 August 1991, the U.S. Department of the Navy (Navy), Southwest Division, Naval Facilities Engineering Command (SWDIV) issued Contract Task Order (CTO) No. 163 under the Comprehensive Long-term Environmental Action Navy (CLEAN) Program, Contract No. N68711-89-D-9296. CTO 163 authorized the preparation of a National Wildlife Refuge (NWR) Study at Naval Weapons Station (NWS) Seal Beach, California. A modification to CTO 163 authorized initial field work for the study. On 24 September 1992, the Navy issued CTO 237 to complete the remaining tasks identified in the Final Work Plan (SWDIV 1992).

1.2 Background

NWS Seal Beach occupies approximately 5,000 acres adjacent to Anaheim Bay, 26 miles south of the Los Angeles urban center, as shown in Figure 1-1. Within the boundaries of NWS Seal Beach is the 911-acre Seal Beach NWR, which is managed by the U.S. Fish and Wildlife Service (USFWS).

Most of the NWR is occupied by the remaining tidal saltmarsh of the once larger Anaheim Bay system. The tidal saltmarsh in the NWR is composed of three main tidal channels and their tributaries. In this study, these main tidal channels are identified as the east, central, and west arms, as shown in Figure 1-2. The three main tidal channels

Revision: 0

are separated by tidal flats that are several feet higher in elevation than the adjacent

tidal channels. The tidal flats are densely vegetated by a variety of saltmarsh plant

species and are inundated by only the highest tides, which occur several times each

year. These tidal flats provide nesting habitat for an array of bird species that occupy

the NWR, as well as habitat for a variety of invertebrate species on which birds and

other vertebrates feed.

In 1990, the Port of Long Beach (POLB) built four ponds at the landward ends of the

east and west tidal channels in the NWR (Figure 1-2). The POLB ponds are

hydraulically connected to the tidal saltmarsh and are part of the NWR. The ponds were

constructed as mitigation for POLB operations offsite and were intended to expand the

tidal saltmarsh to provide habitat for endangered species and other biota in the NWR.

Guidance and responsibilities for development and operation of the POLB ponds is

addressed in a Memorandum of Understanding signed by POLB, the USFWS, the Navy,

California Department of Fish and Game (CDFG) and NMFS.

As part of the Navy's Installation Restoration Program (IRP), an Initial Assessment Study

(IAS) (Navy 1985) and a Remedial Investigation (RI) (Navy 1989), identified potential past

hazardous waste disposal sites and contaminated areas on NWS Seal Beach that could

pose a threat to the biota in the NWR. Additionally, several samples of invertebrates

collected at the NWR by the USFWS showed evidence of bioaccumulation of several

chemicals (USFWS 1989). Subsequently, an Environmental Impact Statement (EIS) for

the NWR was prepared by the USFWS and the Navy (1990) on the Endangered Species

Management and Protection Plan. Among other management issues, the EIS

SCO100217D9.WP5\95\CF

blank page

addressed the potential for operations at NWS Seal Beach to contribute contaminants to the NWR that could adversely affect the health of the tidal saltmarsh ecosystem and several endangered species that occupy the NWR. The Record of Decision (ROD) for that EIS (dated 27 February 1991) identified, among other actions, the need to assess the impacts of operations at NWS Seal Beach on the biota of the tidal saltmarsh in the NWR. The Seal Beach NWR Study was initiated by the Navy in response to that ROD. The development of the Final Work Plan (SWDIV 1992) for the NWR Study included coordination with and approval by the Navy and the USFWS.

1.3 Purpose of Investigation

Several special-status species occupy the NWR. The California Brown Pelican (Pelecanus occidentalis californicus) and American Peregrine Falcon (Falco peregrinus), both listed as endangered by the USFWS and the California Department of Fish and Game (CDFG), occasionally feed at the NWR. The CDFG-listed endangered, USFWS Category 2 candidate (species for which sufficient evidence for listing as threatened or endangered is not yet available), Belding's Savannah Sparrow (Passerculus sandwichensis beldingi), is resident at the edges of the tidal saltmarsh. Additionally, the NWR provides essential breeding habitat for the California Least Tern (Sterna antillarum browni [herein referred to as least tern]), and the Light-footed Clapper Rail (Rallus longirostris levipes [herein referred to as clapper rail]), both of which are listed as endangered by USFWS and CDFG.

The clapper rail is a permanent resident of the NWR, nesting in saltmarsh vegetation throughout the NWR and obtaining the crabs and snails as its primary food items in the

Revision: 0

NWR. Habits of the crabs and snails cause them to be in contact with and/or ingest

sediments in the NWR. Contaminated sediments, therefore, could result in

bioaccumulation of chemicals in the crabs and snails, and in the clapper rail, which

feeds on them.

The least tern occupies and forages for fish in the NWR only during the breeding

season from March through late August. Adult least terns forage up to 2 miles away

from the nesting colony (USFWS and Navy 1990) on NASA Island in the NWR, but most

food for adults and chicks is collected in POLB ponds and tidal channels in the NWR.

While fish consumed by least terns may experience less direct exposure to potentially

contaminated sediments, they do bioaccumulate some chemicals as a result of feeding

on zooplankton in the water column. This bioaccumulation could, in turn, affect the

least tern.

Based on their diets, both the least tern and the clapper rail are high on the food chain

in the NWR. This, combined with the fact that the least tern spends up to half of the

year in the NWR, and the clapper rail is resident in the NWR, make them most likely of

the special-status species in the refuge to experience effects of contaminants, if

contaminants occur at levels sufficient to adversely impact the biota in the NWR. The

primary focus of the NWR Study, therefore, was on the possible impacts of potential

contaminants in the food chain on these two species.

In addition to the NWR Study, which addresses the entire NWR from a broad

perspective, a Remedial Investigation (RI) was completed for four sites at the NWS. The

1-8

SCO100217D9.WP5\95\CF

Final NWR Study Report CTO 0237

CLE-C01-01F237-\$2-0001 Version: Final

Revision: 0

NWS Seal Beach Draft Final Remedial Investigation Report (SWDIV 1994a) documents

and summarizes results of the RI conducted at Sites 1 (Wastewater Settling Pond), 7

(Station Landfill), 19 (Building 241 Disposal Pit), and 22 (Oil Island).

As part of the RI, a preliminary Ecological Risk Assessment (EcoRA) was conducted for

the four sites. Results of the RI were considered in development of the NWR Study

Report and are addressed in Section 5 of the Final Report. Detailed results of the

EcoRA are included in the NWS Seal Beach Draft Final Remedial Investigation Report

(SWDIV 1994a).

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

Revision: 0

2.0 GENERAL APPROACH

The initial approach to evaluating the impacts of the operation of NWS Seal Beach on

the NWR was the design of a study to assess background levels of hazardous waste-

related chemicals in the sediments and biota within the NWR. For the purposes of the

NWR Study, the Final Work Plan defined background as those levels of chemicals that

would exist in the NWR if it were exposed to existing conditions in the Anaheim Bay

watershed without the presence of the NWS Seal Beach. That is, background levels

would be those attributable to regionally ubiquitous chemicals and/or those contributed

to the NWR from the surrounding Anaheim Bay watershed, with the exception of NWS

Seal Beach.

2.1 Phased Study

The most effective means to evaluate background contaminants in the NWR is through

a phased study that combines assessing existing chemicals in sediments and biota in

the NWR, coupled with an investigation of the physical processes in the tidal saltmarsh

that determine sediment transport mechanisms and contaminant patterns. Under ideal

conditions, the results of this study would be compared to contaminant levels in

sediments and biota at a location that is physically and ecologically comparable to the

tidal saltmarsh in the NWR and its watershed, but lacks a military installation that could

be a contaminant source similar to NWS Seal Beach. If the locations were strictly

comparable, the differences in chemicals and their concentrations would identify those

chemicals likely to be attributable to operations of NWS Seal Beach.

SCO100217D9.WP5\95\CF

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Early in the study, a cursory evaluation of tidal saltmarshes in Southern California that

could serve as potential comparable sites indicated that there may be no location that

would serve as comparable in Southern California. Additionally, because many

chemicals already identified as potentially occurring at NWS Seal Beach are known to

occur regionally in Southern California, the value of a comparable location to assess the

chemicals contributed to the NWR by NWS Seal Beach was considered questionable.

The decision was made, therefore, in coordination with the Navy Remedial Project

Manager (RPM) and the USFWS, that Phase I of the NWR Study would only include

development of screening criteria by which a comparable location could be evaluated,

rather than selection and sampling of a comparable location. The primary focus of

Phase I of the NWR Study, then, was to assess the existing contaminant levels in

sediments and biota in the NWR, analyze the physical processes that influence their

distribution, and assess the potential resulting effects on endangered species.

The Phase I investigation was designed to collect sufficient information to assess the

following:

0

o Do elevated levels of chemicals exist in the sediments and/or selected biota in

the NWR tidal saltmarsh?

What are the types and distributions of chemicals in sediments and selected

biota in the NWR? Are contamination gradients identifiable?

Revision: 0

o What are the dynamics of contamination problems in the NWR? Do the

existing conditions in the NWR result from previous transport of contaminants

or is transport ongoing?

o Did the contamination likely originate from NWS Seal Beach, other sources, or

both?

o What are the potential effects of chemicals of concern (COCs) identified in the

NWR on endangered species and other biota?

o Are data analyses beyond those included in Phase I required to further define

the types and extent of contamination or to recommend action?

The amounts and types of data collected and analyses performed in the Phase I study

were intended to provide sufficient information to assess whether a contaminant

problem exists in the NWR, as well as to design Phase II studies as deemed necessary

based on the results of Phase I. This phased approach was considered cost-effective

because it would contain the overall cost of the study if no contaminant problems were

identified in Phase I, and warranted because there was no evidence that endangered

species at the NWR were being affected by contaminants.

2.2 Processes and Components of the Tidal Saltmarsh System

Phase I of the NWR Study included an evaluation of the dynamics of physical processes

and the status of physical and biological components of the tidal saltmarsh.

Assessment of the contaminant status of these components and the physical processes that affect them was necessary to evaluate the existing conditions in the NWR and to project how conditions may change and affect the NWR biota.

2.2.1 Physical Processes

An understanding of the physical processes responsible for water circulation and sediment transport in the NWR was required to evaluate the dynamics of the distribution of contaminants in the NWR. The factors that affect physical processes in the tidal saltmarsh in the NWR include:

- o Drainage patterns and land use within the watershed that influence the delivery of chemicals to the NWR
- o Hydraulic dynamics of the Anaheim Bay system, including the NWR tidal saltmarsh, that influence distribution of sediment (that may carry contaminants), and the resulting sediment transport and erosion/deposition patterns
- o Hydrogeological processes that determine potential groundwater contributions of contaminants to the NWR

The information necessary to evaluate these physical processes included:

o Watershed and land use data (rainfall, topography, soils, drainage

patterns, land use, potential contaminant sources)

o Physical oceanographic data (tidal flux, current velocities, bathymetry,

water column profiles, circulation patterns, sediment grain size)

o Hydrogeological data (well data)

2.2.2 Physical and Biological Components

Animals such as the least tern and clapper rail can be exposed to

environmental contaminants through various media and exposure routes.

Exposure of birds to contaminants can be measured by analyzing their food,

water, air, or body tissues (Ohlendorf, et. al. 1978; Ohlendorf 1993). However,

in most ecological risk assessments (EcoRAs) it is possible to assume that one

route of exposure is dominant and other routes are negligible (Suter 1993). In

the Seal Beach NWR Study, the focus was on the foods of the endangered

species because many of the chemicals of potential concern were known to

bioaccumulate in plants and animals.

Bioaccumulation is the net accumulation of a chemical by an organism as a

result of uptake from all routes of exposure. The food-chain organisms

Revision: 0

sampled in this study were considered to represent the primary exposure

medium for the least tern and clapper rail because they are predominant items

in the birds' diets. Contaminants found in the soil, sediment, water, or air

would tend to be ingested or inhaled in much smaller quantities than those in

the main components of the diet. The food-chain organisms, in turn, would

have accumulated contaminants through an integration of their exposures to

abiotic media (e.g., soil/sediment, water, or air) to which they were exposed,

along with their dietary exposures.

For example, the snails feed on algae, detritus, whereas the crabs also eat

smaller invertebrates. The fish sampled in the NWR study feed on various

small plants (phytoplankton) and animals (zooplankton, insects, etc.) that may

have accumulated chemicals through ingestion or direct uptake from the water

or sediment.

Information collected to evaluate the physical and biological components of the

NWR for Phase I included:

o Assessment of chemical concentrations in sediments in the NWR

because contact with food-chain species could cause

bioaccumulation of chemicals

Assessment of chemical concentrations in the food-chain species

(invertebrates and fish) most frequently consumed by the two species

of greatest concern in the NWR, the clapper rail and the least tern

SCO100217D9.WP5\95\CF

0

Revision: 0

o At the request of the USFWS, assessment of chemical concentrations

in benthic invertebrates to evaluate potential effects on other aquatic

bird species that feed in the NWR

o At the request of the USFWS, Microtox® bioassays to provide a

general measure of potential contamination throughout the NWR

sediments

The chemicals selected for analysis were those that were expected to occur as

a result of NWS Seal Beach activities for which information on wildlife

toxicology was available. Other chemicals (e.g., antimony) were not included

because interpretive information is unavailable. In general, the emphasis was

on inorganic and organic chemicals that could be expected to have adverse

effects on species of concern, if the chemicals occurred in the food chain at

elevated concentrations. Potential COCs that were targeted for analysis are

addressed in Subsection 3.5.2.

2.2.3 Other Studies

While most of the data sets required to evaluate the impacts of NWS Seal

Beach operations on the endangered species in the NWR were necessarily

collected directly for the study, information from previous studies, existing

databases, and studies being completed under the Navy's IRP was identified

and incorporated into the NWR Study wherever appropriate.

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

Revision: 0

3.0 METHODS

This section summarizes the methods by which information on physical processes and

physical and biological components of the NWR was collected and analyzed to assess

the impacts of potential contaminants resulting from operations at NWS Seal Beach on

biota of the NWR. Additional detail on methods may be found in supporting Technical

Memoranda included in this report as Appendices A (Watershed and Land Use

Characterization), B (Sediment Transport Evaluation), C (Sediment Chemistry

Evaluation), and D (Environmental Contaminant Evaluation).

3.1 Watershed and Land Use Characterization

The watershed surrounding the NWR was characterized to identify surface drainage

patterns and potential sources of contamination to the NWR other than the NWS Seal

Beach, and to develop criteria for selection of a comparable site for potential Phase II

study.

Characterization of the watershed included several subtasks: collection of available data

on the size, topography, soils, hydrology, land use, and water quality in the surrounding

watershed; incorporation of the collected data onto map overlays; and synthesis of this

information to summarize watershed characteristics.

SCO100217D9.WP5\95\CF

3.1.1 Data Collection

Data describing the topography, hydrology, and land use in the watershed were collected from a variety of federal, state, and local agencies, as well as through site visits and independent sources. Hydrologic and surface runoff data were obtained from the Orange County Environmental Management Agency (OCEMA); precipitation records were obtained from the California Department of Water Resources (CDWR); soil types in the watershed were taken from the Soil Conservation Service (SCS) soils maps; land use data were obtained from the CDWR, Orange County, municipalities in the watershed and from recent aerial photographs; and water quality data for a number of sampling stations within the watershed were obtained from the U.S. Environmental Protection Agency's (EPA's) STORET System database.

3.1.2 Overlay Mapping

A base map for the watershed was prepared using U.S. Geological Survey 7-1/2 minute quadrangle maps. Watershed and subbasin boundaries, drainage locations, soils distributions, surface water discharge points, and sampling stations for EPA STORET data were located on mylar overlays on the base map. Estimates of the size of the watershed and the Anaheim Bay system were completed using a planimeter.

Revision: 0

3.1.3 Data Analysis

Overlay maps and land use information were used to identify the most

important attributes of the watershed potentially affecting background

contaminant levels and to develop criteria for identifying a comparable location.

3.2 Physical Oceanography Evaluation

The primary objective of the physical oceanography evaluation for the NWR Study was

assessment of sediment transport mechanisms and sediment erosion/deposition

analysis in the NWR to provide an understanding of the dynamics of potential

contaminant movement within the NWR. This understanding provides a framework for

evaluation of chemical analyses resulting from sediment and biological sampling efforts

by explaining the processes by which potentially contaminated sediments may be

transported into and throughout the NWR and the Anaheim Bay system. Information

required for this evaluation included:

Physical oceanographic data collected through existing sources, as well as

through field data collection, to evaluate the physical processes of potential

importance for contaminant transport in the NWR and the surrounding Anaheim

Bay system

Use of the physical oceanographic data to develop a computer model for

3-3

evaluating the hydrodynamics of the tidal saltmarsh in the NWR

0

Revision: 0

o Assessment of the sediment transport potential within the NWR based on the

results of the computer modeling

3.2.1 Data Collection

Data collected to support the physical oceanography evaluation included water

surface elevations (tidal data), bathymetry and dimensions of tidal channels,

and water column profile data at selected locations in the NWR. Data were

collected for each of the three main tidal channels: the west, central, and east

arms (Figure 1-2). These data were used to develop and calibrate the

computer model that was used to estimate current velocities and sediment

transport potential in the NWR. Current and sediment transport potential are

critical to evaluating the transport of potential contaminants in the NWR tidal

saltmarsh.

Water level data. Water surface elevation data, as measured by tidal

propagation (the degree to which water level changes from ocean tides are

communicated landward through tidal channels in the saltmarsh), were

collected using four Flo-Tote water level gauges at four stations. Three gauges

were located near the landward ends of the main tidal channels in the NWR, as

shown in Figure 3-1. To characterize ocean tides, one gauge was located at a

Navy pier in Anaheim Bay, approximately 2,000 feet west of the Pacific Coast

Highway Bridge (not shown on Figure 3-1). Gauges were deployed from 2

December 1992 through 4 January 1993 and were set to take water surface

level readings every 10 minutes for a 30-second sampling interval. Additionally,

Revision: 0

tide data collected at Newport Beach, approximately 10 miles from Anaheim

Bay, were obtained from National Oceanic and Atmospheric Administration

(NOAA) for the month of December 1992. Newport Beach data were

substituted for those collected by the tidal gauge installed at the Navy pier to

characterize ocean tides when it was discovered that the data recorded by the

Anaheim Bay gauge were unusable because of gauge malfunction. The

Newport Beach data are comparable to the Anaheim Bay data for use in this

context.

Bathymetry data. Bathymetry data (water depth) were collected on 1

November 1992 along selected transects (see Figures 2 through 4 in

Appendix B) in the NWR. Continuous traces of the depths along each transect

were recorded using a King Marine Model 1350 fathometer. A marked pole

was also used as a backup for the fathometer and to take spot readings in

areas too shallow for fathometer operation or where eel grass growing in the

channels interfered with readings. The placement of the transects in the

channels and the spot measurements was conducted using landmarks and

channel configurations.

Water column profile. Water temperature and salinity were measured on 1

November 1992 throughout the water column at selected locations. At each

location, readings were taken near the surface and just off of the bottom of the

channel using a YSI CT meter. Current velocity measurements were taken on

13 November 1992 using a Price AA current meter at locations near the

mouths of each of the three main arms of the NWR. Measurements at each

3-7

SCO100217D9.WP5\95\CF

Revision: 0

location were taken approximately 1 foot below the water surface, 1 foot above

the channel bottom, and at mid-depth. These data were used to characterize

the flow in the tidal saltmarsh. For example, if surface and bottom

measurements were different, it could indicate a stratified, two-layer flow

system, requiring the use of a different model than if the measurements

showed the water column to be well-mixed. Current velocity measurements

were also included in choice of the model.

3.2.2 Computer Modeling

Circulation model description. Using the data described above, a circulation

computer model developed by CH2M HILL, based on a finite difference

numerical scheme presented by Koutitas (1988), was used to estimate current

velocities in the tidal saltmarsh and to provide the basis for sediment transport

evaluation. The model is a 1-Dimensional (1-D) model (flow in the direction of

the channel axis only) modified to model flow in tributary branches, as well as

flow through the main channels of the tidal saltmarsh. The model solves

depth-averaged continuity and momentum equations to calculate the response

of the channels to given water level (tidal) variations. Model output of average

current velocities at selected locations in the tidal saltmarsh provides the basis

for sediment transport evaluation.

Equation structure and details of model function, including calibration of the

model and sensitivity analysis, are discussed in Appendix B. A listing of the

program is provided in Attachment 2 of Appendix B.

SCO100217D9.WP5\95\CF

Revision: 0

The use of the model for the NWR is based on the following major

assumptions:

o 1-D Flow: The 1-D case assumes that the important variations in

hydrodynamic and hydrographic parameters in the NWR are along the

axis of the channel rather than in the vertical and cross-channel

directions. Flow rates are taken as depth and cross-channel average

values.

o Unstratified Flow: The model assumes that there is no significant

difference between near-surface and near-bottom values of

temperature and salinity for dry-weather periods. This assumption

was confirmed by measurements taken during field data collection.

Bulk Formulation of Bottom Friction: Bottom friction is expressed as

a nonlinear function of current speed with a constant friction

coefficient. Model calibration adjusts the friction coefficient for the

system under consideration.

Model description. The CH2M HILL model described above is capable of

modeling a single 1-D main channel with a series of 1-D channels feeding into

the main channel. Because the NWR contains three separate main tidal

channels (west, central, and east arms), three separate models were developed

representing existing conditions (including POLB mitigation ponds) in each of

the three main arms of the tidal saltmarsh. Two additional models were run for

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

the east and west arms representing conditions prior to the construction of the

POLB ponds to assess possible hydraulic effects on the tidal saltmarsh

associated with their installation.

Calibration and sensitivity. Calibration of the models was required to account

for site-specific characteristics of the NWR tidal saltmarsh. This was

accomplished primarily by adjusting the friction coefficient until the hydraulic

response of the modeled system matched the response measured in the field.

The models representing the existing conditions in the tidal saltmarsh were

calibrated both against observed currents from field measurements taken on 13

November 1992 and water level data from the tidal data collected during

December 1992. These calibrations provided friction coefficient values for each

of the arms of the tidal saltmarsh that were then used for the model runs.

Model runs. The models were run for a tidal range at the mouth of the tidal

saltmarsh of 8 feet with a 14-hour period, corresponding to the order of

extreme events based on a review of the tidal predictions for Los Angeles,

California in the National Oceanic Service (NOS) tide tables (NOS 1993).

These tides were assumed to be sinusoidal and were run for a sufficient

number of cycles so that any transients resulting from start-up of the model

would damp out. The maximum current velocities were extracted from the

results of each model for use in the sediment transport evaluation.

SCO100217D9.WP5\95\CF

Revision: 0

3.2.3 Sediment Transport Evaluation

Transport of sediment in the NWR results from shear stresses acting on the

bed material from fluid flow over the bed. As the velocity of flow over the bed

increases, a threshold level may eventually be reached. This threshold level is

defined as the conditions at which sediment motion will be initiated.

Various factors, such as sediment and fluid density, grain size, and shape and

profile of the channel bottom, influence threshold velocity. Hjulström

developed a simplified sediment threshold criterion to predict erosion,

transport, and deposition of various size sediment grains based on average

flow velocities (Graf, 1971) (see the Hjulström diagram, Appendix B, Figure 9).

This criterion indicates that uncohesive, fine, and medium sand are most easily

eroded, but that cohesion tends to bind smaller clay and silt size particles

together to resist erosive forces. Once mobilized, however, the smaller

sediments will stay in motion under the influence of smaller current velocities.

In other words, sand-sized particles would be most easily mobilized as the

current velocity increases and the first to settle out as the currents decrease.

An empirical relation for the threshold of sand-sized material was presented by

Costa and Issacs (1977) and has been applied to tidal flows by Stauble et al.

(1987, 1988), Bhogal (1989), and Bhogal and Costa (1989). This criterion

relates the critical velocity, depth of flow, and sand grain size and is given by:

$$V_a = K(D)^a(g)^b$$

Eqn (1)

where:

V_c = the critical mean velocity (ft/sec)

D = the depth of flow (ft)

g = the median grain size

K = 1.168

a = 0.1

b = 0.4

K, a, and b are empirical constants determined from field and flume data. For the NWR Study, this relationship was applied for a range of grain sizes from about 0.1 to 0.9 millimeters (mm).

Deposition/Erosion Analysis. The deposition/erosion analysis for the NWR combined information on maximum current velocities derived from model runs, sediment grain-size results from sediment analyses, and thresholds for mobilization of sand-sized materials to predict patterns of sediment erosion and deposition, thus, potential contaminants movement in the NWR tidal saltmarsh.

Revision: 0

The following approach was taken for evaluating the erosion/deposition

tendencies for the tidal saltmarsh:

o The threshold current velocities for the silt and sand-sized grains were

assessed.

o The current velocities that result in deposition of the above grain sizes

were evaluated.

Current velocities required for erosion and deposition were compared

with the maximum current velocities calculated by the circulation

model presented above.

o Areas of the tidal saltmarsh that are prone to erosion or deposition

were identified based on the above evaluations.

3.3 Hydrogeological Evaluation

The potential for contaminants to be introduced to the NWR through groundwater was

evaluated by assessing the direction of groundwater movement. Groundwater level

measurements were made at four wells during field work to collect physical

oceanographic data. Additionally, information on local hydrogeologic conditions was

collected during RI field activities. This information was evaluated to assess the

predominant direction of groundwater movement and the potential for groundwater to

contribute contaminants to the NWR.

3.4 Sediment Chemical Evaluation

The purpose of sediment chemical evaluation in the NWR was to assess the existing

levels and distribution of chemicals in sediments and to identify gradients in chemical

concentrations. Combined with an understanding of physical transport mechanisms,

this information is important to evaluate potential sources of contamination in the NWR.

3.4.1 Sample Collection

Sediment samples were collected on 24 through 26 October 1992 from 22

locations in the NWR and 1 location at the mouth of Huntington Harbour near

the southwest boundary of the NWR, as shown in Figure 3-2. Samples were

collected in tidal channels immediately adjacent to the sample locations

identified for collection of invertebrates on the tidal flat. An 11-foot-long

inflatable boat was used to access most of the sample locations, and sediment

was collected from the boat using a Ponar dredge or a shovel. At each

sample location, the time of collection, sample number, code for required

analyses, stratification of sediment, texture, organic material, and other physical

characteristics were noted in a field notebook. Chain-of-custody records were

prepared daily for all samples collected.

At each sample location, a minimum of 200 grams (g) of sediment was

collected in a whirl-pak® container for total metals analysis, a minimum of

400 g was collected in a chemically cleaned and certified I-Chem bottle for

analysis of pesticides, polychlorinated biphenyls (PCBs), and polycyclic

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Revision: 0

aromatic hydrocarbons (PAHs), and a minimum of 100 g was collected in each

of two I-Chem bottles for total organic carbon analysis and acid volatile sulfide

analysis.

3.4.2 Sample Analysis

From among the 23 sample locations, two split samples were obtained for

each type of analysis. Two field duplicates for each type of analysis were

obtained from sample locations not used for split samples. Two samples with

sufficient volumes of sediment were designated for use for matrix-spike

duplicates (MSDs).

Samples were initially stored on ice, then frozen while awaiting permission from

the USFWS to ship them to the USFWS contract laboratory, Geochemical and

Environmental Research Group (GERG), at Texas A&M University. The GERG

was contracted through an Interagency Agreement (IAG) between the USFWS

and the Navy specifically to complete sediment and biological analyses for this

Seal Beach NWR Study.

Analyses were conducted by GERG following NOAA Status and Trends

methods as described in Appendix B of the Final Work Plan (SWDIV, 1992).

The GERG uses Contact-Required Detection Limits (CRDL). The CRDL varies

somewhat because of sample sizes and interference. The GERG performs

annual computations of their method detection limit as required by 40 CFR

Part 136, Appendix B. Arsenic, barium, cadmium, chromium, copper, nickel,

SCO100217D9.WP5\95\CF

Revision: 0

selenium, silver, and zinc were analyzed by inductively coupled plasma (ICP) emission spectroscopy following sample digestion according to Standard Operating Procedure (SOP)-8905. Lead was analyzed by graphite furnace atomic absorption (AA) spectroscopy and mercury by cold vapor reduction AA according to SOP-8905. Target detection limits were as follows: 4 milligrams per kilogram (mg/kg) lead; 3 mg/kg silver; 1 mg/kg barium; 0.6 mg/kg copper; 0.5 mg/kg arsenic, chromium, nickel, and selenium; 0.2 mg/kg zinc; and 0.1 mg/kg cadmium and mercury. For PAHs, cleanup and extraction was according to SOP-ST04 and analysis was by gas chromatography/mass spectrometry (GC/MS) according to SOP-8905. For pesticides and PCBs, extraction and cleanup were by SOP-9015 and analysis by SOP-ST04. Target detection limits were 5 nanograms per gram (ng/g) (or 0.005 mg/kg) for individual PAHs, and 2 ng/g (or 0.002 mg/kg) for individual pesticides and PCBs when levels of detection were low; in samples with high concentrations, the target detection limits were 60 times those values.

Quality assurance/quality control (QA/QC) for the chemical analyses was provided by the USFWS Patuxent Analytical Control Facility (PACF) in accordance with that agency's existing contract with GERG, as described in Appendix B of the Final Work Plan (SWDIV 1992). Method blanks were run with every 20 samples or with every sample set, whichever was more frequent. Blank levels were acceptable if they were no more than three times the method detection limit (MDL). MS/MSD samples were run at the same frequency as method blanks with the spiking level between 3 and 10 times the MDL. Surrogate materials were added (spiked) to each sample (including QC

Revision: 0

samples) at levels between 3 and 10 times the MDL. In addition, standard

reference materials were analyzed at a frequency of one per sample batch (or

20 samples). Criteria for acceptance of analytical results are discussed in

Appendix B of the Final Work Plan.

3.4.3 Evaluation of Sediment Chemical Analyses

Results of analyses were evaluated based on the most current standards

presented in a 1993 report titled Criteria to Rank Toxic Hot Spots in Enclosed

Bays and Estuaries of California provided by the State of California, State Water

Resources Control Board, Division of Water Quality, which includes sediment

screening levels developed by the NOAA (Long and Morgan 1990) and by the

State of Florida (1993). Concentration of chemicals in sediment was the only

one of the three ranking parameters that was applied in the toxic hot spot

evaluation. This was done for evaluation purposes only. In addition, sediment

chemical values were compared with ERM and ERL values of Long and

Morgan (1990).

3.5 Biological Chemical Evaluation

The purpose of biological chemical evaluation in the NWR was to identify chemical

levels in invertebrate and fish species ingested by the clapper rail and the least tern, as

well as by other bird species that forage in the NWR. Invertebrate species eaten by the

clapper rail (snails, crabs, and benthic species) and fish species eaten by the least tern

were chosen for sampling because these food species potentially bioaccumulate

SCO100217D9.WP5\95\CF

Revision: 0

chemicals, making the birds more likely to be exposed to harmful levels of chemicals in

food than in other media (air, water, or sediment). Sampling events were scheduled for

the breeding season during which exposure to chemicals is of greatest concern

because chemical exposure during egg-laying could subsequently affect developing

embryos in the eggs and because adult birds feed chicks food items collected in the

NWR.

3.5.1 Sample Collection

Samples of invertebrates and fish were collected by Jacobs Team biologists

from CH2M HILL (with assistance on some occasions from Navy, USFWS, and

Department of Toxic Substances Control [DTSC] personnel). Invertebrates

were collected at 22 sample locations in the NWR and 1 sample location at the

mouth of Huntington Harbour, near the southern boundary of the NWR

(Figure 3-2). Table 3-1 provides a summary of sampling events and species

collected during the study. Fish were collected in the four POLB ponds and at

four locations in tidal channels in the NWR. Fish collection occurred twice

during the breeding season in 1992 and three times during the breeding

season in 1993 (see Resampling subsection later in 3.5.1) so that all size

classes of fish fed to least tern chicks would be analyzed for contaminants.

Crabs and snails were collected once during the 1992 breeding season and

then were resampled over two sampling events following the 1992 breeding

season in October 1992 and during the 1993 breeding season (see

Table 3-1 Summary of Sampling Times and Species Collected During the Seal Beach NWR Study

	Year and Month					
	1992		1993			
Species	May	June	October	May	June	July
Deepbody anchovy (Anchoa compressa)	·		X	X	Х	Х
Northern anchovy (<i>Engraulis</i> mordax)	Х	Х			X	X
California killifish (<i>Fundulus</i> parvipinnis)			Х	X	Х	Х
Queenfish (Seriphus politus)			х		x	
Topsmelt (Atherinops affinis)	Х	X	х	Х	X	Χ
Goby (Gobiidae)				Х	х	Х
Diamond turbot (Hypsopsetta guttulata)					Х	
Horned snail (Certhidea californica)		X	Х			
Saltmarsh snail (Melampus olivaceous)		Х	Х	X	Х	
Striped shore crab (Pachygrapsus crassipes)		Х	X	Х		
Clam			Х			
Ghost shrimp (Callianassa affinis)				X	Х	
Polychaete worms (Nereis sp.)				Х		
Filamentous algae					Х	

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Revision: 0

Resampling subsection later in 3.5.1). An inflatable boat was used to gain

access to most of the sample locations.

Sampling was coordinated with the USFWS to ensure that disturbance to

nesting birds (especially the clapper rails that nest throughout the NWR) would

be minimized. Fish sampling was also coordinated with investigators

monitoring the POLB mitigation ponds to minimize impacts of the NWR

sampling on their ongoing monitoring of biotic colonization of the ponds.

Samples of all species for organic contaminants analyses were placed in 250

milliliter (ml) or 500 ml chemically cleaned and certified I-Chem glass jars.

Samples for inorganic analyses were placed in whirl-pak® plastic bags.

Field-collected duplicate samples were taken for both inorganic and organic

analyses at sample locations where organisms were found in adequate

abundance. At each sample location, the date, sample number, species, and

code for the associated analyses were recorded in a field notebook.

Chain-of-custody records were prepared daily.

As was the case with sediment samples, arrangements for completion of

contaminant analyses on biological samples were included in an IAG between

the Navy and the USFWS. The IAG could not be completed before the 1992

field season began, therefore, efforts to finalize that agreement proceeded as

samples were collected. Samples could not be forwarded to the USFWS

contract laboratory for analysis until the IAG was completed. Therefore,

following their collection and before completion of the IAG, all samples were

SCO100217D9.WP5\95\CF

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

stored in a rented freezer in Building 68 at the NWS Seal Beach, as agreed to

by all parties.

Crabs and snails. Striped shore crabs, saltmarsh snails, and horned snails

were collected at each of the 23 sample locations shown in Figure 3-2. Snails

and crabs were collected by hand along the edges of tidal channels and on

tidal flats between tidal channels. Animals were rinsed in ambient water from

the tidal saltmarsh before being placed into sample containers and frozen for

storage. Algae or mud not removed during this rinsing remained on the

samples to represent the condition of the food items as they would be

ingested by foraging birds. To provide sufficient biomass for contaminant

analyses (15 grams minimum), individuals of a single species were combined

to create composite samples.

Benthic Invertebrates. The USFWS requested the collection and analysis of

benthic infauna samples to evaluate the potential contaminants in the food

items of birds other than the clapper rail and least tern that forage in the NWR.

Benthic invertebrates (polychaetes and mollusks) were collected at sample

locations where they were sufficiently abundant to obtain adequate biomass for

analysis (minimum 15 g) using an air-lift dredge and screen (Pearson et al.

1973) or hand trowels.

Fish. Fish (primarily topsmelt and deepbody anchovy) were sampled in the

four POLB mitigation ponds located within the NWR (see Figure 3-2). In

addition, during each sampling event, fish were collected at four locations in

3-24

SCO100217D9.WP5\95\CF

Revision: 0

NWR tidal channels where least terns were observed feeding and where it was

possible to sample with the available equipment. Accessibility to areas for fish

sampling was affected by the tide level, thus, sample locations for fish were not

always consistent between sampling events.

Fish were captured with a 4-foot-deep, 100-foot-long, 1/4-inch mesh, beach

seine. Fish were sorted by species and species with adequate biomass for

chemical analysis were rinsed with ambient water and frozen as composite

samples for analysis. Individuals that were too large to be considered food

items for the least terns or species with insufficient biomass to comprise a

sample for analysis were noted and returned to the pond or tidal channel. Fish

species taken in the POLB ponds and in tidal channel locations were identified

and recorded in the field notebook, regardless of whether they were collected

for analyses.

Microtox® testing. USFWS conducted bioassay testing of sediments from

each of the 23 sample locations using a Microtox® test, which measures

toxicity to marine bacteria and is sensitive to a broad array of chemicals.

When sediment samples were collected from 24 to 26 October 1992 for

chemical analysis, a subsample of the homogenized sediment was taken for

the bioassay. This sample was stored on ice in the field and then transported

to the USFWS office in Carlsbad, California, where the bioassays were

conducted within 24 hours of collection.

3-25

SCO100217D9.WP5\95\CF

Revision: 0

Resampling. On 12 August 1992, a Jacobs Team biologist discovered that

power had been cut off to the portion of Building 68 at NWS Seal Beach in

which the frozen samples were stored. The duration of the power outage was

sufficient for the specimens (which included fish collected during the May 1992

sampling event, and fish, crabs, and snails collected during the June 1992

sampling event) that were stored there to thaw and decompose. Some of the

whirl-pak® containers ruptured, causing potential cross-contamination and

rendering these samples unusable.

Eighteen of the thawed but intact samples were salvaged and refrozen for

analysis; the others were discarded. Those salvaged (four crab samples, four

horned snails, four saltmarsh snails, four topsmelt, and two anchovies) were

selected to represent various areas within the NWR for comparison with

samples that would be recollected.

Following the discovery in August that all samples in the freezer had thawed,

the Jacobs Team consulted the Navy (Jeff Kidwell), USFWS (Steve Goodbred

and Leonard LeCaptain), Jacobs Team Technical Reviewers (Mike Concannon

and Steve Cox), and the USFWS contract laboratory (Terry Wade) to determine

whether the salvaged samples would be useful for analysis and, if not, the best

plan for obtaining replacement samples. The conclusions of this evaluation

were:

o The 18 salvaged samples should undergo contaminants analysis.

Analyses for inorganic and organic chemicals would be performed on

SCO100217D9.WP5\95\CF

Revision: 0

samples collected in I-Chem bottles (originally intended for organic

chemical analyses only) because Whirl-paks® containing samples for

inorganic chemical analyses ruptured during the thawing process.

o Crabs and snails should be collected to replace the lost samples (but

the timing of this collection need not be constrained by the breeding

season because the invertebrates are consumed year-round by

clapper rails at the NWR).

o A third 1992 collection of fish should be conducted as soon as

possible (because the tern breeding season was expected to end by

mid-August).

o Replacement fish collection for the tern breeding season should be

scheduled for May, June, and July 1993.

The Jacobs Team did not receive notice to proceed with the resampling until

late September 1992. Therefore, resampling for invertebrates and a limited fish

sampling was conducted in October 1992. Invertebrate species that could not

be recollected at several sample locations in October 1992 were recollected in

May or June 1993. Fish were recollected in May, June, and July 1993.

Tern eggs. Twenty-three least tern eggs that failed to hatch in the breeding

colony at NASA Island in the NWR were collected by the USFWS in 1991 and

1993 and were analyzed in eleven samples for inorganic and organic

Revision: 0

contaminants as part of the NWR Study. These samples included five single eggs and six composites composed of three eggs each to provide sufficient biomass for analysis. After collection, the eggs were stored in a refrigerator until processing in the USFWS laboratory at Carlsbad, California. Eggs were measured and then cut open with a clean scalpel around the middle. Contents were placed into I-Chem (chemically cleaned) jars and frozen. Shells were cleaned of loose debris with tap water and allowed to dry for eggshell thickness measurements (being performed by USFWS and not reported here).

3.5.2 Analytical Methods

invertebrates, fish, and least tern eggs. Samples of invertebrates (including exoskeletons and shells) and fish were analyzed as whole-body composited samples for inorganic and organic contaminants listed in Table 3-2 by the GERG at Texas A&M University, College Station. Whole-body analysis allowed evaluation of the organism as ingested by the birds, including algae or sediments adhering to shells, and sediment present in the gut.

The GERG was under contract to USFWS to perform analyses of sediment and biological samples for the NWR Study. The choice of a USFWS contract laboratory to conduct the analyses was made because of the role of the USFWS in managing the NWR, and to help ensure the acceptability of the data. The GERG was selected from among the USFWS-contracted laboratories because it was the only laboratory that could perform the full suite of analyses required.

Method	Table 3-2 Detection Limits	for	Chemicals
	in Biological Sar	nnle	25
	iii Biologicai cai	ייוףיי	.0
	_		

Sheet 1 c				
Chemical	Method Detection Limit			
Inorganics (mg/kg, dry weight)				
Aluminum	11.1			
Arsenic	0.5			
Barium	0.2			
Boron	0.7			
Cadmium	0.1			
Chromium	4.0			
Copper	0.8			
Iron	1.4			
Lead	0.5			
Magnesium	12.8			
Manganese	0.3			
Mercury	0.1			
Molybdenum	1.7			
Nickel	2.6			
Selenium	0.5			
Silver	0.3			
Strontium	0.1			
Vanadíum	3.6			
Zinc	1.2			
Organics (mg/kg, wet weight)				
Acenaphthalene	0.02			
Acenaphthene	0.01 or 0.02			
Acenaphthylene	0.01 or 0.02			
Aldrin	0.01 or 0.02			
Anthracene	0.01 or 0.02			

Table 3-2 Method Detection Limits for Chemicals in Biological Samples

Sheet 2 of 4

	Sneet 2 of	
Chemical	Method Detection Limit	
1,2-Benzanthracene	0.02	
Benzo(a)anthracene	0.01 or 0.02	
Benzo(a)pyrene	0.01 or 0.02	
Benzo(b)fluoranthene	0.01 or 0.02	
Benzo(e)pyrene	0.01 or 0.02	
Benzo(g,h,i)perylene	0.01 or 0.02	
Benzo(k)fluoranthene	0.01 or 0.02	
alpha-BHC	0.01 or 0.02	
beta-BHC	0.01 or 0.02	
delta-BHC	0.01 or 0.02	
gamma-BHC (Lindane)	0.01 or 0.02	
1,1-Biphenyl	0.01 or 0.02	
Biphenyl	0.02	
C1-Chrysenes	0.01 or 0.02	
C2-Chrysenes	0.01 or 0.02	
C3-Chrysenes	0.01 or 0.02	
C4-Chrysenes	0.01 or 0.02	
alpha-Chlordane	0.01 or 0.02	
gamma-Chlordane	0.01 or 0.02	
Chrysene	0.01 or 0.02	
4,4'-DDD	0.01 or 0.02	
4,4'-DDE	0.01 or 0.02	
4,4'-DDT	0.01 or 0.02	
1,2,5,6-Dibenzanthracene	0.02	
Dibenzo(a,h)anthracene	0.01 or 0.02	
C1-Dibenzothiophenes	0.01 or 0.02	

Table 3-2 Method Detection Limits for Chemicals in Biological Samples

Sheet 3 of 4

	Sheet 3 of 4	
Chemical	Method Detection Limit	
C2-Dibenzothiophenes	0.01 or 0.02	
C3-Dibenzothiophenes	0.01 or 0.02	
Dibenzothiophene	0.01 or 0.02	
Dieldrin	0.01 or 0.02	
2,6-Dimethylnaphthalene	0.01 or 0.02	
Endrin	0.01 or 0.02	
C1-Fluoranthenes and Pyrenes	0.01 or 0.02	
C1-Fluorenes	0.01 or 0.02	
C2-Fluorenes	0.01 or 0.02	
C3-Fluorenes	0.01 or 0.02	
Fluoranthene	0.01 or 0.02	
Fluorene	0.01 or 0.02	
НСВ	0.02	
Heptachlor	0.01 or 0.02	
Heptachlor Epoxide	0.01 or 0.02	
Hexachlorobenzene	0.01 or 0.02	
Indeno(1,2,3-CD)pyrene	0.01 or 0.02	
1-Methylphenanthrene	0.01 or 0.02	
1-Methylnaphthalene	0.01 or 0.02	
2-Methylnaphthalene	0.01 or 0.02	
Mirex	0.01 or 0.02	
C1-Naphthalenes	0.01 or 0.02	
C2-Naphthalenes	0.01 or 0.02	
C3-Naphthalenes	0.01 or 0.02	
C4-Naphthalenes	0.01 or 0.02	
Naphthalene	0.01 or 0.02	

Table 3-2 Method Detection Limits for Chemicals in Biological Samples

Sheet 4 of 4

Chemical	Method Detection Limit
cis-Nonachlor	0.01 or 0.02
trans-Nonachlor	0.01 or 0.02
o,p'-DDD	0.01 or 0.02
o,p'-DDE	0.01 or 0.02
o,p'-DDT	0.01 or 0.02
Oxychlordane	0.01 or 0.02
C1-Phenanthrenes and Anthracenes	0.01 or 0.02
C2-Phenanthrenes and Anthracenes	0.01 or 0.02
C3-Phenanthrenes and Anthracenes	0.01 or 0.02
C4-Phenanthrenes and Anthracenes	0.01 or 0.02
PCB-1254	0.01 or 0.02
PCB-1260	0.01 or 0.02
PCB-TOTAL	0.01 or 0.02
Perylene	0.01 or 0.02
Phenanthrene	0.01 or 0.02
Pyrene	0.01 or 0.02
Toxaphene	0.01 or 0.02
1,6,7-Trimethyl-Naphthalene	0.01 or 0.02

Sample analyses were completed by GERG in 1992 and 1993 during which time method detection limits for some chemicals changed. Method detection limits for those chemicals, therefore, are shown as "0.01 or 0.02."

Method detection limits used were those specified by the USFWS and are based on NOAA Quality Assurance/Quality Control (QA/QC) criteria. Analyses for organic contaminants were conducted following the NOAA Status and Trends methods described in Appendix B of the Final Work Plan (SWDIV 1992). Arsenic, barium, cadmium, chromium, copper, nickel, selenium, silver, and zinc were analyzed by ICP emission spectroscopy following sample digestion according to SOP-8905. Lead was analyzed by graphite furnace AA spectroscopy and mercury by cold vapor reduction AA according to SOP-8905. Target detection limits were as follows: 4 mg/kg lead; 3 mg/kg silver; 1 mg/kg barium; 0.6 mg/kg copper; 0.5 mg/kg arsenic, chromium, nickel, and selenium; 0.2 mg/kg zinc; and 0.1 mg/kg cadmium and mercury. For PAHs, cleanup and extraction was according to SOP-ST04 and analysis was by GC/MS according to SOP-8905. For pesticides and PCBs, extraction and cleanup were by SOP-9015 and analysis by SOP-ST04. Target detection limits were 5 ng/g (or 0.005 mg/kg) for individual PAHs, and 2 ng/g (or 0.002 mg/kg) for individual pesticides and PCBs when levels of detection were low; in samples with high concentrations the target detection limits were 60 times those values. Table 3-2 provides a list of detection limits achieved in the analyses.

QA/QC for the chemical analyses was provided by the USFWS in accordance with that agency's existing contract with GERG. Method blanks were run with every 20 samples or with every sample set, whichever was more frequent. Blank levels were acceptable if they were no more than three times the MDL. MS/MSD samples were run at the same frequency as method blanks with the spiking level between 3 and 10 times the MDL. Surrogate materials were

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

added (spiked) to each sample (including QC samples) at levels between three

and ten times the MDL. In addition, standard reference materials were

analyzed at a frequency of one per sample batch (or 20 samples). Criteria for

acceptance of analytical results are discussed in Appendix B of the Final Work

Plan (SWDIV 1992).

Microtox® testing. Microtox® bioassays were conducted using the solid

phase test protocol (Microbics 1991), which is used to measure the toxicity of

materials that are tightly bound to particles in soil, sediment, or sludge. The

procedure allows the test organisms to come in direct contact with toxicants in

an aqueous suspension of the test sample, detecting both the soluble and

insoluble organic and inorganic material.

Least tern eggs. Least tern eggs were analyzed for inorganic and organic

contaminants if adequate sample biomass was available. However, the sample

biomass for single eggs was not always sufficient for all analyses, therefore,

the following analyses were performed: six composites and three single eggs

were analyzed for all chemicals; two single eggs were analyzed only for

organics. Results for inorganics were expressed on dry-weight basis and

organics were reported on wet-weight basis. Although wet-weight chemical

concentrations in eggs are typically adjusted to fresh wet-weight

concentrations (to account for moisture loss that occurs during incubation),

SCO100217D9.WP5\95\CF

Revision: 0

this was not done with samples from the NWR because of the manner in which

samples were handled (compositing eggs, etc.).

3.5.3 Statistical Methods

The NWR biological analysis results required log transformation to normalize

data distributions before statistical analysis. Log transformation is standard for

bioaccumulation data and is used in the National Biocontaminants Program

because most biological distributions follow a log normal distribution. This was

the case for data collected in the NWR Study.

Means were computed (as geometric means) if detected values exceeded

50 percent of the samples. For cases where chemicals were detected in more

than 50 percent, means were computed using one-half of the MDL for the

"nondetected" values. This procedure is commonly used when contaminant

concentrations in biological samples are not normally distributed and when the

chemicals are not measurable in all samples. Means presented in this report

have been back-transformed as antilogs from the means of log values to

produce the geometric means.

Chemical concentrations in the salvaged samples were compared to the

recollected samples of identical species and sample locations for a given

analyte using a series of paired t-tests.

SCO100217D9.WP5\95\CF

Linear regression analysis was used to evaluate relationships between Microtox® toxicity results and sediment chemistry.

Version: Final Revision: 0

4.0 RESULTS

This section summarizes results of data collection and analysis for the evaluation of watershed and land use, physical oceanography processes, and physical (sediment) and biological (invertebrates, fish, and bird eggs) components of the NWR. Additional detail on results may be found in Appendices A, B, C, and D.

4.1 Watershed and Land Use Characterization

Results from the watershed and land use characterization bear on two components of the Seal Beach NWR study by providing:

- o An understanding of the pathways by which surface runoff, carrying chemicals from the surrounding watershed, could enter the NWR
- o Criteria by which the watersheds of potential comparable sites can be evaluated, should comparable site selection be required for a Phase II effort.

4.1.1 Surface Water Runoff

Figure 4-1 shows the watershed boundaries and major drainage pathways for surface water runoff in Anaheim Bay watershed. The watershed is divided into eight subbasins: NWS Seal Beach and seven subbasins surrounding NWS Seal Beach.

Revision: 0

Surface runoff in the Anaheim Bay watershed is highly channelized. Pathways for the majority of surface contaminants into the NWR from the surrounding watershed are through Anaheim Bay via discharges into Anaheim Bay, Huntington Harbour, and Bolsa Bay, with Bolsa Bay flowing into Huntington Harbour. Figure 4-2 indicates discharge points for surface runoff from the subbasins in the Anaheim Bay watershed and water quality sample locations for the EPA STORET system database. These data indicate that potential contaminants may enter the NWR as runoff mixed with Anaheim Bay water during tidal exchange (STORET data are presented as Attachment 2 of Appendix A). No STORET data were available for the NWS Subbasin of the watershed.

4.1.2 Comparable Location Criteria and Evaluation

The Final Work Plan for the Wildlife Refuge Study at Seal Beach NWR includes the identification of criteria for potential comparable locations for possible sampling in a Phase II effort, if necessary. The locations considered should be comparable, to the greatest degree possible, to the ecological community in the tidal saltmarsh in the NWR and the Anaheim Bay watershed. Characterization of the Anaheim Bay watershed yielded the following criteria by which to evaluate potential comparable locations with respect to size, topography, land use, soils, hydrology, precipitation, and land use.

Size. The total Anaheim Bay watershed area, including the NWS, includes 48,000 to 50,000 acres. The surface area of the Anaheim Bay system

Revision: 0

(including Anaheim Bay, the NWR, Huntington Harbour, and Bolsa Bay) is

between 1,400 and 1,900 acres, resulting in a watershed to Bay system ratio

ranging from approximately 25:1 to 36:1.

Topography. The Anaheim Bay watershed consists of a flat, coastal plain with

average slopes for the Subbasins 1 through 5 and 7 of less than 0.3 percent.

The western portion of Subbasin 6 is predominantly marshland at or near sea

level, with hills at elevations reaching 125 feet on the eastern end. The

average slope from the eastern edge of the watershed to the edge of the tidal

saltmarsh is about 2.3 percent.

Land use. The Anaheim Bay watershed is urbanized and largely occupied by

residential development with supporting park, school, and commercial

developments interspersed throughout. Subbasin NWS (Figure 4-1) supports

some seasonal agricultural activity.

Soils. Soil patterns classified as Hueneme-Bolsa associations make up

approximately 70 percent of the total watershed area. These soils have

moderate to slow rates of water transmission resulting in moderate to high

rates of runoff. Pockets of Metz-San Emigdio and Sorrento-Mocho association

soils account for 20 to 25 percent on the northeast portion of the watershed.

These soils have moderate to high rates of water transmission resulting in

relatively low runoff potential. The remaining 5 to 10 percent of the watershed

consists of pockets of Myford and Alo-Bosanko association soils along the

coastline. These soils have very slow rates of water transmission with high

Revision: 0

runoff potential. A soils map for the Anaheim Bay watershed is presented as

Figure 3 of Appendix A.

Hydrology. Precipitation patterns for the inland portion of the watershed

indicate a mean annual precipitation of between 11.8 and 12.4 inches for a

record period from 1957 through 1980. Rainfall in this area, however, is highly

variable with annual totals ranging from a low of 3.4 inches in 1961 to a high of

26.3 inches in 1978. Mean monthly rainfall values are highest from November

through April, with a peak in February of 2.8 inches. Little to no precipitation

typically occurs during the remaining months. Most surface runoff into

Anaheim Bay from the watershed subbasins is associated with storm events

during the winter and early spring corresponding to periods of higher

precipitation.

In order to provide a measure of the background chemical levels in the NWR

(those that would occur in the absence of NWS Seal Beach), the comparable

location can have no military installation within its watershed.

Evaluation of potential comparable locations. Several potential comparable

locations, and the physical and ecological attributes of each, were identified by

examining maps and aerial photographs of the Southern California coast,

through discussions with Jacobs Engineering Group Inc. (Jacobs) ocean

technology scientists and marine biologists who have experience in Southern

California tidal saltmarsh systems, and USFWS biologists with Southern

California experience.

SCO100217D9.WP5\95\CF

Potential locations included:

- o Bolsa Chica Ecological Reserve
- o Newport Bay
- o Agua Hedionda
- o Batiquitos Lagoon
- o San Elijos Lagoon
- o Tijuana Estuary
- o Buena Vista Lagoon
- o Los Penasquitos Lagoon
- o Kendall Frost Preserve, Mission Bay

Potential comparable locations and their watersheds were then assessed with respect to the criteria listed above and compared to Seal Beach NWR and the surrounding Anaheim Bay watershed to assess their eligibility as a comparable site with the following results:

Bolsa Chica Ecological Reserve is part of the Anaheim Bay watershed, thus, contamination from surface runoff is not independent of that entering the NWR, eliminating it as a possible comparable location.

Batiquitos Lagoon, San Elijos Lagoon, Buena Vista Lagoon, and Los Penasquitos Lagoon are not open to tidal exchange or are open only occasionally, resulting in different hydrodynamics and ecological conditions

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

from those in the NWR. These locations, therefore, could not serve as

comparable sites.

Newport Bay, Kendall Frost Preserve in Mission Bay, and Tijuana Estuary each

have one or more military installations located in their watersheds, eliminating

them as possible comparable locations.

Agua Hedionda is not ecologically comparable to the NWR, lacking the

cordgrass habitat that supports the food-chain species that are ingested by the

clapper rail.

Initial assessment of potential comparable locations along the California coast

yields no single site that is comparable to the tidal saltmarsh in the NWR, with

the exception of a military installation. The value of using a component

comparable location (as discussed in the Final Work Plan [SWDIV 1992]) to

evaluate background chemical concentrations will need to be evaluated based

on results and recommendations from sediment and biological contaminant

analyses, the sediment transport evaluation and the potential need for a

Phase II effort.

4.2 Physical Oceanography Evaluation

This subsection describes results of analyses to evaluate the movement of sediments

that can carry contaminants throughout the NWR, as well as an evaluation of

4-10

hydrogeologic factors potentially influencing the NWR.

SCO100217D9.WP5\95\CF

4.2.1 Sediment Transport Analysis

The range of grain sizes (silt and sand) identified in the sediment analyses was used to evaluate threshold velocities and erosion and deposition in the NWR tidal saltmarsh. Grain-size analysis indicated that sediments have a greater fraction of sand-sized particles closer to the mouths and in the main channels of the three arms, and a greater fraction of silt-sized particles at the more landward ends and the tributaries of the main channels. This distribution is a result of the current velocities at which particles with different grain sizes are deposited. The velocity at which particles start to deposit as bottom sediments decreases with sediment particle size. The current velocity in the tidal saltmarsh generally decreases from the mouth of the main tidal channels landward up the tidal saltmarsh and into the tributaries of the main channels. Thus, larger particles are expected to be deposited first (i.e., closer to the mouth). Smaller particles are deposited farther into the tidal saltmarsh where current velocities are generally lower.

4.2.2 Deposition/Erosion Analysis

Based on the relationship developed by Hjulström (Appendix B, Figure 9), the velocity required to mobilize sediment with median grain sizes in the sand range can vary from about 18 to 40 centimeters per second (cm/sec) (0.6 feet per second [ft/sec]) depending on the value of the median grain size. Current velocities for mobilization of sediment with median sizes in the silt range can range from about 25 to 190 cm/sec (0.8 to 6.2 ft/sec) depending on the value

Revision: 0

of the median grain size. Similarly, threshold velocities for deposition of

suspended sediments range from about 0.38 to 15 cm/sec (1.012 to 0.5 ft/sec)

for sand-sized sediments.

Areas that are prone to deposition or erosion can be identified based on the

threshold velocities associated with grain size and water depth. In the NWR,

the potential for erosion is considered high in areas with average velocities

greater than 1.5 ft/sec and moderate in areas with average velocities greater

than 0.6 ft/sec corresponding to the approximate threshold velocities required

to mobilize silt and fine sand particles, respectively. Areas prone to deposition

are considered to be those with maximum velocities less than 0.1 ft/sec

corresponding to the velocity at which medium sand will settle out. Figure 4-3

indicates areas in the tidal saltmarsh that are prone to deposition or erosion

based on these criteria along with the results of the model runs. Figure 4-3

also illustrates the existing conditions in the tidal saltmarsh, while Figure 4-4

indicates the conditions prior to construction of the POLB ponds.

Under existing conditions, the main channels for all three of the arms of the

tidal saltmarsh generate sufficient velocities over most of their lengths to

mobilize bottom sediments. Areas that are prone to deposition are at the ends

of the smaller tributary channels and in the POLB ponds.

Models of the pre-POLB pond conditions for the west and east arms show

much less tendency for erosion than under existing conditions. The west arm

model results indicate that sufficient velocities could have been developed over

4-12

SCO100217D9.WP5\95\CF

Revision: 0

the lower two-thirds of the arm to mobilize sand-sized particles, with deposition

potential at the end of the main channel and ends of the minor branch

channels. The east arm results indicate that without the POLB ponds, there

was little to no tendency for erosion through the main channel. Again, areas at

the ends of the main and branch channels are prone to deposition.

Threshold velocities determined above for sediment mobilization assume that

the bottom sediments are exposed directly to the currents. Field observations

indicate that eel grass was observed growing in many areas of the tidal

saltmarsh. Eel grass has the effect of sheltering the bottom sediments from

the currents, reducing the potential for sediment movement in some areas, and

increasing the potential for deposition in others.

Although eel grass will reduce the amount of sediment mobilization, patches of

exposed sediments appear to be present in most sections of the tidal

saltmarsh. As a result, the potential for sediment mobilization remains in most

areas, as shown in Figure 4-3.

Eel grass may increase sedimentation in some areas of the NWR, especially in

some of the marginally deposition-prone areas in which larger particles first

begin to settle out. As such, the areas shown in Figure 4-3 to be deposition-

prone may be expanded some due to eel grass near their borders. Eel grass

could also hinder movement of larger sized particles in areas that are shown in

Figure 4-3 to have moderate to high erosion potentials but would not be

expected to have much effect in these areas on smaller silt-sized particles that

4-17

SCO100217D9.WP5\95\CF

are more easily carried with the currents. Although eel grass can affect sedimentation and erosion to the extent described above, eel grass in the Seal Beach NWR estuary should not change the general sediment transport characterization shown in Figure 4-3.

4.2.3 Hydrogeologic Analysis

Well data collected during the RI at Site 1, located approximately 600 feet north of POLB Pond 2 (see Figure 1-2), showed that the wells contained water with salinity comparable to that of seawater, indicating a possible hydraulic connection with waters of the NWR (SWDIV 1994a). The data also indicated a groundwater gradient toward the northwest, away from the NWR. If these wells are hydraulically connected with and discharging to the NWR, groundwater contaminants could be discharged to the NWR. Given the shallow groundwater gradient to the northwest, it is unlikely that the water in the wells in being discharged to the NWR. If these wells were discharging to the NWR, the concentrations of potential contaminants would likely be largely reduced at the tidal-water interface. Groundwater, thus, is not expected to be a significant source of contamination to the NWR. Additional information on the status of groundwater contaminants at Installation Restoration Program sites is included in the Draft Final Remedial Investigation Report (SWDIV 1994a).

Revision: 0

4.3 Sediment Chemical Evaluation

This subsection includes results from the sediment chemical analyses, which provide

information on the status and spatial distribution of sediment contaminants in the NWR.

This information is important to assess potential sources of contaminants, understand

the potential consequences of sediment transport in the NWR, and evaluate the status

of contaminants in the biota in the NWR.

4.3.1 Inorganics

Concentrations of arsenic, chromium, copper, lead, nickel, silver, and zinc

(Table 4-1) in some samples exceeded the no-observed effects levels (NOEL),

as shown in Table 4-2 (State of California 1993). Silver barely exceeded the

NOEL of 0.5 mg/kg in one sample, a field duplicate at sample location E-3.

Some concentrations of lead, nickel, and zinc also exceeded the effects range

low (ERL) of NOAA (Table 4-2). Exceedances of the ERL were most common

for zinc, although the highest concentration of zinc observed (210 mg/kg) was

only three times the NOEL and less than two times the ERL. Similarly, the

highest concentrations of lead and nickel were about three times the NOEL

(Table 4-2).

Concentrations of metals, acid volatile sulfide, and total organic carbon (TOC)

observed in sediment from Seal Beach NWR are shown in Table 4-1.

Aluminum, iron, and manganese are not contaminants of concern. They are in-

cluded in Table 4-1 because they are useful for interpreting the data on other

Revision: 0

metals with regard to whether concentrations observed represent

contamination or natural (geologic) background. Background concentrations

for metals in the Southern California Bight, obtained or derived from several

sources, are shown in Table 4-3. These are reasonable geologic background

values.

A possible approach for evaluating whether metals are present as

contaminants or as geological constituents of sediments has been proposed

for other areas such as Florida (Schropp et al. 1990) and Louisiana (Pardue et

al. 1992). Those authors established relationships between concentrations of

heavy metals and aluminum, which is an abundant metallic component of most

soils, from "clean" areas. In contrast, they found that in samples from areas

influenced by human activity, relative amounts of heavy metals to aluminum

were higher than those established relationships for "clean" areas. This

approach requires a data set from regional clean areas with a range of

concentrations of aluminum and other metals that cover one or more orders of

magnitude.

The NWR data do not meet that requirement nor is it known for certain which

samples might be "clean." However, the ratios of aluminum to other metals are

relatively constant among all of the samples from the NWR, as shown in

Table 4-4, which suggests the possibility that variations in concentrations of

metals may be due to variations in the major mineral constituents of the

sediment (mainly calcium and magnesium), rather than to specific sources of

metals contamination. One important qualification to that conclusion, as noted

SCO100217D9.WP5\95\CF

in Sediments from Seal Beach NWR

Station	Sample								,					
Name	Name	Aluminum	Arsenic	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Nickel	Silver	Zinc	Sulfide	тос
A1	1SB	29,200	9.50 a	0.200 U	58.0 a	67.1 a	48,600	38.4 b	681	48.9 b	0.350 U	172 b	50.4	2.36
B1	2SB	23,900	11.0 a	0.450	47.7 a	54.2 a	39,600	52.5 b	464	37.4 b	0.350 U	210 b	728	1.87
B2	3SB	8,930	4.50	0.200 U	16.2	17.1	19,200	26.0 a	196	13.2	0.350 U	73.4 a	322	0.710
C1	4SB	11,000	6.30	0.200 U	21.8	19.4	26,500	15.1	328	17.4 a	0.350 U	77.1 a	34.0	0.380
C2	24SB	18,400	11.9 a	0.250	36.3 a	38.8 a	39,000	30.9 a	476	30.4 b	0.350 U	152 b	60.3	1.29
C2	5SB	21,000	11.0 a	0.240	38.8 a	39.8 a	39,700	31.2 a	546	34.5 b	0.350 U	148 b	81.4	0.750
СЗ	6SB	23,900	7.30	0.200 U	45.3 a	52.4 a	45,700	32.6 a	534	33.0 b	0.350 U	197 b	1,950	1.95
C4	7SB	22,200	8.00	0.210	37.8 a	44.5 a	38,900	31.1 a	543	30.5 b	0.350 U	168 b	1,050	1.14
D1	8SB	15,700	6.70	0.200 U	24.1	26.2	27,200	20.6	365	19.4 a	0.350 U	102 a	78.5	0.590
D2	9SB	24,700	14.4 a	0.200 U	45.6 a	41.1 a	36,100	23.5 a	502	32.1 b	0.350 U	156 b	143	1.37
D3	10SB	16,700	12.5 a	0.200 U	36.2 a	36.7 a	38,700	32.1 a	528	28.3 a	0.350 U	133 b	175	1.55
E1	11SB	11,800	6.05	0.200 U	27.6	30.4 a	26,300	24.6 a	319	20.7 a	0.350 U	112 a	636	0.890
E2	12SB	21,000	11.2 a	0.200 U	40.1 a	33.3 a	33,500	23.6 a	464	28.0 a	0.350 U	130 b	420	0.590
E3	13SB	14,100	7.40	0.200 U	30.7	36.9 a	27,600	28.3 a	368	22.6 a	0.350 U	170 b	275	1.00
E3	29SB	21,300	6.50	0.200 U	30.4	36.8 a	29,500	26.9 a	389	21.5 a	0.740 a	144 b	201	1.17
E4	14SB	18,500	17.5 a	0.200 U	44.8 a	49.6 a	45,500	28.0 a	527	35.7 b	0.350 U	148 b		3.01
E4	26SB	23,600	13.7 a	0.200 U	41.6 a	49.8 a	47,000	25.7 a	496	31.7 b	0.350 U	158 b	77.4	2.41
F1	15SB	9,300	5.20	0.200 U	19.2	18.6	17,800	19.7	235	14.5	0.350 U	72.7 a	188	0.580
F1	25SB	10,700	5.10	0.200 U	17.7	16.9	19,800	17.7	234	12.2	0.350 U	73.1 a	82.6	1.05
F2	16SB	15,000	6.40	0.200 U	32.3	35.1 a	27,300	26.4 a	369	23.4 a	0.350 U	131 b	714	1.05
F2	28SB	17,600	6.00	0.200 U	29.2	33.8 a	29,700	24.9 a	364	20.7 a	0.350 U	140 b		1.02
F3	17SB	10,300	5.50	0.200 U	21.5	19.3	16,700	20.6	240	14.5	0.350 U	73.4 a	399	0.720
F4	18SB	15,700	8.20 a	0.200 U	35.7 a	36.4 a	29,100	26.2 a	382	25.5 a	0.350 U	120 a	456	1.02
F5	19SB	14,400	5.60	0.200 U	28.7	22.3	21,500	19.7	309	18.7 a	0.350 U	80.9 a	197	0.270
F5	27SB	15,400	4.30	0.200 U	23.5	22.7	28,000	20.7	370	16.7 a	0.350 U	99.0 a	204	0.230
G1	20SB	13,800	11.2 a	0.200 U	31.2	28.5 a	29,200	16.3	361	25.0 a	0.350 U	88.3 a	30.1	1.94
G2	21SB	7,360	4.60	0.200 U	16.1	19.7	13,700	19.9	187	12.3	0.350 U	67.3	83.2	0.630
G3	22SB	15,400	5.70	0.200 U	34.0 a	35.3 a	29,600	25.0 a	399	24.9 a	0.350 U	135 b	657	0.660
H1	23SB	6,920	3.00	0.200 U	14.1	11.6	11,300	17.4	168	10.3	0.350 U	48.3	85.9	0.170

a Exceeds the NOEL sediment screening standard b Exceeds the ERL sediment screening standard U Undetected. Value equals detection limit.

Version: Final Revision: 0

Table 4-2
Comparison of Sediment Screening Levels Developed by NOAA (Long and Morgan, 1990) and the State of Florida (1992) (from State of California, 1993)

Morgan, 1990) and the State of Florida (1992) (from State of California, 1993)									
Substance	NOEL ²	ERL ³	PEL ⁴	ERM ⁵					
Organics in ug/kg or ppb									
Total PCBs	25	50	270	380					
Acenaphthene	22	150	450	650					
Anthracene	85	85	800	960					
Fluorene 2-methyl naphthalene Naphthalene	18 130	35 65 340	460 1,100	640 670 2,100					
Phenanthrene Total low molecular weight-PAHs	140 250	225	1,200 2,400	1,380					
Benz(a)anthracene	160	230	1,300	1,600					
Beno(a)pyrene	220	400	1,700	2,500					
Chrysene	220	400	1,700	2,800					
Dibenzo(a,h)anthracene	31	60	320	260					
Fluoranthene	380	600	3,200	3,600					
Pyrene	290	350	1,900	2,200					
Total high molecular weight-PAHs Total PAHs	875 2,900	4,000	8,500 28,000	35,000					
4,4-DDE	1.7	2	130	15					
Total DDT	4.5	3	270	350					
Metals in mg/kg or ppm									
Arsenic	8	33	64	85					
Cadmium	1	5	7.5	9					
Chromium	33	80	290	145					
Copper	28	70	170	390					
Lead	21	35	160	110					
Mercury	0.15	0.15	1.4	1.3					
Nickel	15	30	50	50					
Silver	0.5	1	2.5	2.2					
Zinc	6 8	120	300	270					

¹ Values are for bulk sediment chemistry on a dry-weight basis.

²NOEL is defined as the sediment concentration below which adverse effects are not likely to occur. The value is derived by taking the geometric mean of 15th percentile of the effects database and the 50th percentile of the no-effects database and dividing by a safety factor of 2. (State of Florida, 1993) ³The ERL is analogous to the NOEL. It is the concentration below which adverse effects are seldom

The ERL is analogous to the NOEL. It is the concentration below which adverse effects are seldom expected. It is developed by taking the 10th percentile of the ranked adverse effects data in the Long and Morgan database. (Long and Morgan, 1990)

4PEL is that concentration above which adverse biological effects are likely to occur. It is developed by

⁴PEL is that concentration above which adverse biological effects are likely to occur. It is developed by taking the geometric mean of the 50th percentile value of the effects database and the 85th percentile value of the no-effects database. (State of Florida, 1993)

⁵The ERM is analogous to the PEL. It is that concentration above which adverse effects are likely. It is

⁵The ERM is analogous to the PEL. It is that concentration above which adverse effects are likely. It is developed by taking the 50th percentile of the ranked adverse effects data in the Long and Morgan database. (Long and Morgan, 1990)

Version: Final Revision: 0

Table 4-3 Regional Background Concentrations of Metals in Offshore Sediments							
Metal	Background ^{a,b,c,d} Concentrations (mg/kg dry weight)						
Arsenic	10 ^a						
Barium	490 ^b						
Beryllium	e _c						
Cadmium	0.55 ^d (0.4 ^a)						
Cobalt	8 ^C						
Chromium	29.7 ^{d,e}						
Copper	6.94 ^d , 10 ^a						
Iron	19,000 to 30,000 ^d						
Lead	6.02 ^d , 10 ^a						
Mercury	0.05 ^a						
Nickel	23.2 ^d						
Selenium	0.2 to 0.3 up to 1.0 ^a						
Silver	0.51 ^d , 0.01 to 0.1 ^a						
Tin	1.18 to 11.06 ^f						
Vanadium	103 ^d						
Zinc	44.6 ^d , 40 to 60 ^a						

^aFrom Mearns et al. (1991).

^bCalculated from data in Katz and Kaplin (1981).

^cFrom Lindsay (1979).

^dFrom Katz and Kaplin (1981).

^eCould be lower in bays and harbors according to Mearns et al. (1991).

^fFrom Anderson, Bay, and Thompson (1988); Los Angeles and Long Beach harbors.

			D-41	Table 4-4		- 4 - I -		
			Ratios of Alumin	num Content to P	riority Pollutant M	etals	T	
Station Name	Sample Name	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc
A1	1SB	3,070 a	146,000 U	503 a	435 a	760 b	597 b	169 b
B1	2SB	2,170 a	53,100	503 a	441 a	455 b	639 b	114 b
B2	3SB	1,980	44,600 U	551	522	344 a	676	122 a
C1	4SB	1,750	55,100 U	506	568	730	634 a	143 a
C2	24SB	1,730 1,540 a	73,500	506 a	474 a	596 a	605 b	121 b
C2	5SB	1,910 a	87,500	541 a	528 a	674 a	609 b	142 b
C3	6SB	3,280	120,000 U	528 a	457 a	733 a	725 b	121 b
C4	7SB	2,780	106,000	588 a	499 a	733 a 714 a	723 b 729 b	132 b
D1	8SB	2,750	78,700 U	653	600	762	811 a	154 a
D2	9SB	1,720 a	124,000 U	543 a	602 a	1,055 a	771 b	159 b
D3	10SB	1,330 a	83,300 U	460 a	455 a	520 a	589 a	125 b
E1	11SB	1,950	58,900 U	427	388 a	478 a	570 a	105 a
E2	12SB	1,880 a	105,000 U	524 a	631 a	892 a	750 a	162 b
E3 ,	13SB	1,910	70,500 U	460	382 a	498 a	624 a	83 b
E3	29SB	3,280	107,000 U	702	580 a	793 a	992 a	148 b
E4	14SB	1,060 a	92,700 U	414 a	374 a	663 a	519 b	125 b
E4	26SB	1,720 a	118,000 U	567 a	473 a	916 a	744 b	149 b
F1	15SB	1,790	46,500 U	484	500	471	641	128 a
F1	25SB	2,090	53,300 U	602	630	602	873	146 a
F2	16SB	2,340	74,900 U	464	427 a	567 a	640 a	114 b
F2	28SB	2,930	87,900 U	602	520 a	706 a	850 a	126 b
F3	17SB	1,870	51,300 U	478	532	498	708	140 a
F4	18SB	1,910 a	78,300 U	438 a	430 a	597 a	614 a	131 a
F5	19SB	2,570	72,000 U	502	645	731	770 a	178 a
F5	27SB	3,570	76,800 U	653	677	742	920 a	155 a
G1	20SB	1,230 a	69,100 U	443	485 a	845	552 a	156 a
G2	21SB	1,600	36,800 U	457	374	369	598	109
G3	22SB	2,690	76,800 U	451 a	435 a	615 a	616 a	114 b
H1	23SB	2,310	34,600 U	491	596	397	672	143

a Concentration in Table 4-5 exceeds the NOEL sediment screening standard (Table 4-1)

b Concentration in Table 4-5 exceeds the ERL sediment screening standard (Table 4-1)

U Undetected. Value equals detection limit.

Version: Final Revision: 0

above, is the consistency with which the highest concentrations of several

metals were observed at sample locations A-1, B-1, and C-3.

The highest concentrations of arsenic, chromium, and copper were about twice

the NOEL, and in many samples, the concentrations of those metals barely

exceeded the NOEL, as indicated by comparing Tables 4-1 and 4-2. A safety

factor of two was applied in deriving the NOELs (Table 4-2). Note that for

arsenic and nickel, the regional background values (Table 4-3) are higher than

the NOELs (Table 4-2) and similar to the concentrations at the NWR (Table 4-1)

that exceeded the NOELs (Table 4-2). However, nickel at sample location A-1

was twice the regional background and also exceeded the ERL.

The small range of concentrations of metals detected in sediment samples

precludes identification of concentration gradients in the NWR that might help

identify potential sources of contamination. Further precluding the detection of

gradients is that metal concentrations may be related to sediment grain size

and TOC, being lower in sandy sediments (shown by grain size analysis to be

more common in the seaward portions of the NWR closest to Anaheim Bay)

with low TOC. However, the three highest concentrations of chromium were

found at A-1, B-1 and D-2, and the three highest concentrations of copper,

lead, and zinc were observed at sample locations A-1, B-1, and C-3. Nickel

was highest at sample locations A-1, B-1, and E-4 (Table 4-1). These five

sample locations are among the more landward locations sampled at the NWR.

4-29

SCO100217D9.WP5\95\CF

SCO100217D9.WP5\95\CF

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

4.3.2 Organics

PAHs were observed at several locations at concentrations near detection

limits, as shown on Table 4-5. Highest concentrations of individual compounds

and of total PAHs were found at sample locations B-1, D-1, and E-1; all of

these sample locations are in the west arm of the NWR tidal saltmarsh.

Sample location C-1, between D-1 and E-1, had no detected PAHs. Total

PAHs were calculated using 0.5 times the detection limits for nondetected

compounds. This was done because the presence of some PAHs indicated

that others were probably present at concentrations below the detection limits.

All PAH concentrations in sediments were below the NOELs (Table 4-1) and so

are not expected to have adverse biological effects.

Detection limits for pesticides and PCBs were consistently higher than the

NOELs and ERLs. Therefore, whenever pesticides or PCBs were detected,

their concentrations exceeded both the NOELs and the ERLs (Table 4-5).

Total PCBs were detected only in one of two laboratory duplicate analyses at

sample location C-3. Metabolites of DDT (4,4'-DDD and 4,4'-DDE) were

detected at several locations with 4,4'-DDE being widespread in the NWR.

Total DDT (Table 4-5) was calculated using 0.5 times the detection limit for

nondetected compounds. Concentrations of DDT were highest at sample

location B-1 where 0.181 mg/kg of 4,4'-DDE were observed and 4,4'-DDD

was also detected. Sample locations B-2 and C-2 had the second and third

	Table 4-5											
1						Organic Constitue						
			PO	LYCYCLIC AR	OMATIC	HYDROCARBO	NS (All values	have units of pr	b (ug/kg) d	iry weight)		
Station Name			Acenaphthalene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)- anthracene	Chrysene	Perylene
A1	1SBPP	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U
11	2SBPP	9.51 U	9.51 U	9.51 U	9.51 U	32.2	9.51 U	54.3	54.3	24.1	44.2	16.1
B2	3SBPP	9.45 U	9.45 U	9.45 U	9.45 U	9.45 U	9.45 U	19.2	22.0	11.0	15.1	20.6
C1	4SBPP	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U
C2	24SBPP		11.6 U	11.6 U	11.6 U	11.6 U	11.6 U	21.2	24.1	12.5	23.1	11.6 U
C2	5SBPP	9.79 U	9. 7 9 U	9.79 U	9.79 U	9.79 U	9.79 U	22.6	26.4	11.3	22.6	9.79 U
C3	6SBPP	9.29 U	9.29 U	9. 29 U	9.29 U	9. 2 9 U	9.29 U	24.0	24.0	10.9	24.0	9.29 U
C4	7SBPP	9.53 U	9.53 U	9.53 U	9.53 U	9.53 U	9.53 U	17.8	19.7	9.87	19.7	9.53 U
D1	8SBPP	9.41 U		13.2	9.41 U	72.7	23.1	101	97.4	44.6	54.5	13.2
D2	9SBPP	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	16.7	13.9	9.57 U	11.2	27.9
D3	10SBPP	9.96 U		9.96 U	9.96 U	9.96 U	9.96 U	9.96 U	11.0	9.96 U	11.0	9.96 U
E1	11SBPP			9.10 U	9.10 U	12.1	15.6	43.3	52.0	20.8	34.7	13.9
E2	12SBPP	1		9.77 U	9.77 U	9.77 U	9.77 U	10.2	10.2	9.77 U	9.77 U	
E3	13SBPP	9.55 U		9.55 U	9.55 U	9.55 U	9.55 U	12.6	14.4	9.55 U	12.6	9.55 U
E3	29SBPP	9.46 U		9.46 U	9.46 U	9.46 U	9.46 U	15.5	17.3	9.46 U	15.5	9.46 U
E4	14SBPP			9.79 U	9.79 U	9.79 U	9.79 U	12.9	15.4	9.79 U	9.79 U	
E4	26SBPP	1 1		12.5 U			12.5 U	15.1	15.1	12.5 U	12.5 U	
F1	15SBPP					9.91 U	9.91 U	16.3	15.6	9.91 U	12.7	9.91 U
F1	25SBPP					9.88 U	9.88 U	12.8	11.2	9.88 U	9.88 U	
F2	16SBPP		and the second s	9.74 U	9.74 U		9.74 U	17.1	17.1	10.2	11.9	9.74 U
F2	28SBPP			9.96 U			9.96 U		17.9	9.96 U	17.9	9.96 U
F3	17SBPP						9.78 U		9.78 U		9.78 U	
F4	18SBPP						9.86 U		13.9	9.86 U	12.1	9.86 U
F5	19SBPP						10.0 U		10.0 U		10.0 U	
F5	27SBPP						9.90 U		9.90 U		9.90 U	
G1	20SBPP						9.64 U		9.64 U		9.64 U	
G2	21SBPP						9.81 U		20.9	11.3	20.9	9.81 U
G3	22SBPP						9.81 U		12.1	9.81 U	10.3	9.81 U
H1	23 SBPP	9.57 U	J 9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U

- a Exceeds the ERL sediment screening standard
- b Exceeds the EINE sediment screening standard
 U Undetected. Value equals detection limit.
 J Estimated. Below CRDL and above IDL/MDL

				Consents	ations of C	Ta Organic Constitue	ble 4-5	to from Saal D	anah NWD			
		DO	VCVCLIC ADOM							PESTICIDES		
		POLYCYCLIC AROMATIC HYDROCARBONS (Units are ppb (ug/kg) dry weight)								ESTICIDES		
Station	Sample	Benzo(b)-	Benzo(k)-	Benzo(e)-	Benzo(a)	Indeno(1,2,3-cd	Dibenzo(a,h)-	Benzo(ghi)-		1		
		fluoranthene	fluoranthene	pyrene	pyrene	pyrene	anthracene	perylene	4,4'-DDD	4,4'-DDE	4,4'-DDT	O.P'-DDT
Al	1SBPP	9.63 U	9,63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	18.3 a	9.63 U	9.63 U
B1	2SBPP	26.1	28.1	30.2	26.1	14.1	9.51 U	16.1	40.2	181 b	9.51 U	9.51 U
B2	3SBPP	11.0	11.0	27.5	12.4	9.45 U	9.45 U	9.45 U	27.5	27.5 a	9.45 U	9.45 U
Ci	4SBPP	8.98 U	8.98 U	8.98 U	9.0 U	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U a	8.98 U	8.98 U
C2	24SBPP	16.4	15.4	15.4	15.4	11.6 U	11.6 U	13.5	11.6 U	19.3 a	11.6 U	11.6 U
C2	5SBPP	15.1	15.1	15.1	13.2	9.79 U	9.79 U	11.3	18.8	37.7 a	9.79 U	9.79 U
C3	6SBPP	17.5	19.7	17.5	19.7	15.3	9.29 U	15.3	11.2 U	21.8 a	11.2 U	11.2 U
C4	7SBPP	15.8	15.8	13.8	17.8	13.8	9.53 U	15.8	9.53 U	19.7 a	9.53 U	9.53 U
DI	8SBPP	29.7	33.0	24.8	41.3	23.1	9.41 U	23.1	9.41 U	16.5 a	9.41 U	9.41 U
D2	9SBPP	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U a	9.57 U	9.57 U
D3	10SBPP	9.96 U	9.96 U	9.96 U	9.96 U	9.96 U	9.96 U	9.96 U	9.96 U	18.3 a	9.96 U	9.96 U
El	11SBPP	20.8	22.5	17.3	20.8	10.4	9.10 U	12.1	9.10 U	17.3 a	9.10 U	9.10 U
E2	12SBPP	9.77 U	9.77 U	9.77 U	9.77 U	9.77 U	9.77 U	9.77 U	9.79 U	9.79 U a	9.79 U	9.79 U
E3	13SBPP	10.8	10.8	9.55 U	10.8	9.55 U	9.55 U	10.8	9.55 U	18.0 a	9.55 U	9.55 U
E3	29SBPP	12.1	13.8	10.4	10.4	9.46 U	9.46 U	10.4	9.46 U	17.3 a	9.46 U	9.46 U
E4	14SBPP	9.79 U	9.79 U	9.79 U	10.3	9.79 U	9.79 U	10.3	9.79 U	9.79 U a	9.79 U	9.79 U
E4	26SBPP	12.5 U	12.5 U	12.5 U	12.5 U	12.5 U	12.5 U	12.5 U	12.5 U	12.5 U a	12.5 U	12.5 U
F1	15SBPP	10.4	11.1	9.91 U	9.91 U	9.91 U	9.91 U	9.91 U	9.91 U	12.7 a	9.91 U	9.91 U
F1	25SBPP	9.88 U	9.88 U	9.88 U	9.88 U	9.88 U	9.88 U	9.88 U	9.88 U	9.88 U a	9.88 U	9.88 U
F2	16SBPP	11.9	11.9	10.2	11.9	9.74 U	9.74 U	10.2	9.74 U	17.1 a	9.74 U	9.74 U
F2	28SBPP	12.5	14.3	10.8	10.8	9.96 U	9.96 U	12.5	9.96 U	17.9 a	9.96 U	9.96 U
F3	17SBPP		14.5	9.78 U	9.78 U	9.78 U	9.78 U	9.78 U	9.78 U	9.78 U a	9.78 U	9.78 U
F4	18SBPP	1	12.1	10.4	10.4	9.86 U	9.86 U	9.86 U	9.86 U	17.3 a	9.86 U	9.86 U
F5	19SBPP		10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U a	10.0 U	10.0 U
F5	27SBPP		9.90 U	9.90 U	9.90 U	9.90 U	9.90 U	9.90 U	9.90 U	9.90 U a	9.90 U	9.90 U
G1	20SBPP		9.64 U	9.64 U	9.64 U	9.64 U	9.64 U	9.64 U	9.64 U	9.64 U a	9.64 U	9.64 U
G2	21SBPP		17.7	12.9	14.5	12.9	9.81 U	14.5	9.81 U	16.1 a	9.81 U	9.81 U
G3	22SBPP		9.81 U	9.81 U	9.81 U	9.81 U	9.81 U	9.81 U	9.81 U	17.2 a	9.81 U	9.81 U
H1	23 SBPP	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	14.4 a	9.57 U	9.57 U

a Exceeds the ERL sediment screening standard

b Exceeds the PEL sediment screening standard

U Undetected. Value equals detection limit.

J Estimated. Bleow CRDL and above IDL/MDL

				Table 4-5		
		Concentrations	of Organic Consti	tuents in Sedime	ents from S	eal Beach NWR
				LIZED VALUES	3	
	[Total	Total		
Station	Sample	Total	LMW	HMW	Total	Total
Name	Name	РСВ	PAH	PAH	PAH	DDT
A1	1SBPP	9.63 U	28.9 U	60.0 U	88.9 U	32.7 Ja
B1	2SBPP	9.51 U	55.9 J	339 J	395 J	231 Ja
B2	3SBPP	9.45 U	28.3 U	165 J	193 J	64.4 Ja
C1 C2	4SBPP	8.98 U	26.9 U	60.0 U	86.9 U	18.0 Ua
C2	24SBPP	11.6 U	34.7 U	172 J	207 J	36.6 Ja
C2	5SBPP	9.79 U	29.4 U	168 J	197 J	66.3 Ja
C3	6SBPP	125 2	27.9 U	198 J	226 J	38.7 Ja
C4	7SBPP	9.53 U	28.6 U	170 J	198 J	34.0 Ja
D1	8SBPP	9.41 U	123 J	490 J	614 J	30.6 Ja
D2	9SBPP	9.57 U	28.7 U	110 J	138 J	19.1 Ua
D3	10SBPP	9.96 U	29.9 U	71.9 J	102 J	33.2 Ja
E1	11SBPP	9.10 U	45.9 J	274 Ј	319 J	31.0 Ja
E2	12SBPP	9.79 U	29.3 U	70.5 J	99.8 J	19.6 U a
E3	13SBPP	9.55 U	28.7 U	108 Ј	136 J	32.3 Ja
E3	29SBPP	9.46 U	28.4 U	125 J	154 J	31.5 Ja
E4	14SBPP	9.79 U	29.4 U	88.8 J	118 J	19.6 U a
E4	26SBPP	, 12.5 U	37.5 U	80.3 J	118 J	25.0 U a
F1	15SBPP	9.91 U	29.7 U	101.1 J	131 J	27.6 Ja
F1	25SBPP	9.88 U	29.6 U	73.9 J	104 J	19.8 U a
F2	16SBPP	9.74 U	29.2 U	128 J	157 J	31.7 Ja
F2	28SBPP	9.96 U	29.9 U	136 J	166 J	32.9 Ja
F3	17SBPP	9.78 U	29.3 U	69.5 J	98.8 J	19.6 U a
F4	18SBPP	9.86 U	29.6 U	106 J	136 J	32.1 Ja
F5	19SBPP	10.0 U	30.1 U	60.0 U	90.1 U	20.0 Ua
F5	27SBPP	9.90 U	29.7 U	60.0 U	89.7 U	19.8 U a
G1	20SBPP	9.64 U	28.9 U	60.0 U	88.9 U	19.3 Ua
G2	21SBPP	9.81 U	29.4 U	176 J	205 J	30.8 Ja
G3	22SBPP	9.81 U	29.4 U	77.7 J	107 J	31.9 Ja
H1	23SBPP	9.57 U	28.7 U	6.0 U	34.7 U	28.7 Ja

- a Exceeds the ERL sediment screening standard b Exceeds the PEL sediment screening standard U Undetected. Value equals detection limit.
 J Estimated. Below CRDL and above IDL/MDL

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

highest concentrations of 4,4'-DDE, with 4,4'-DDD detected in one of two

duplicate samples from C-2.

The detected concentration of the 4,4'-DDE at sample location B-1 was above

the probable effects level (PEL) of 0.130 ppm (Table 4-1). Concentrations at

other locations where 4,4-DDE was detected (Table 4-5) were one-fifth to one-

sixth of the PEL, but generally over the effects range median (ERM). Since the

ERM for 4,4'-DDE is lower than the PEL, it was exceeded in 17 of the 19

samples where 4,4'-DDE was detected.

Pesticide concentrations in sediments in the NWR were found to be

comparable to those in Los Angeles Harbor and other Southern California bays

and harbors (Mearns et al. 1991). Gradients based on dry-weight

concentrations of nonpolar organic compounds can be misleading because

those compounds are most likely adsorbed to organic matter in the sediment.

Organic contaminant concentrations normalized to 1/kg TOC are shown in

Table 4-6. The TOC-normalized concentration of 4,4-DDE at sample location

H-1, the outermost sample location, was similar to the TOC normalized

concentration at sample location B-1, among the most landward sample

locations. By contrast, the gradients indicated for the TOC-normalized PAH

were similar to those for the dry weight-normalized PAH, with the highest

concentrations of detected compounds occurring at sample locations D-1 and

C-1, respectively.

SCO100217D9.WP5\95\CF

4-37

4.4 Biological Chemical Evaluation

4.4.1 Analysis Results

Chemical concentrations in invertebrate and fish tissue were originally reported by the GERG in mg/kg on a dry-weight basis for inorganic analytes and on a wet-weight basis for organic analytes. Results are reported here on those same bases. Some toxicity information is available on a wet-weight basis for inorganics or on a lipid-standardized basis for organic analytes. Using the information on average moisture and lipid content for each species given in Table 4-7, it is possible to convert results between dry-weight, wet-weight, and lipid-weight standardized values to obtain approximate values based on the following formulas:

- Dry-Weight Concentration, mg/kg = (Wet-Weight Concentration, mg/kg) X 100/(100-Moisture percent)
- Wet-Weight Concentration, mg/kg = (Dry-Weight Concentration, mg/kg/100) X (100-Moisture percent)
- Lipid-Weight Concentration, mg/kg = (Wet-Weight Concentration, mg/kg) / (Lipid percent / 100)

Salvaged samples. The 18 invertebrate and fish samples salvaged from the group of thawed samples that had been stored in glass jars for organic

Table 4-6 TOC-Normalized Concentrations of Organic Constituents on Sediment from Seal Beach NWR

					POLYCYCLIC	AROMATIC HYDR	OCARBONS (AII	values have units o	f ug/kg TOC)			3.5
Station Name	Sample Name	Naphthalene	Acenaphthalene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)- anthracene	Chrysene	Perylene
A1	1SBPP	408 U	408 U	408 U	408 U	408 U	408 U	408 U	408 U	408 U	408 U	408 U
B1	2SBPP	508 U	508 U	508 U	508 U	1,720	508 U	2,900	2,900	1,290	2,370	860
B2	3SBPP	1,390 U	1,390 U	1,390 U	1,390 U	1,390 U	1,390 U	2,830	3,230	1,620	2,220	3,030
C1	4SBPP	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U
C2	24SBPP	897 U	897 U	897 U	897 U	897 U	897 U	1,640	1,870	971	1,790	897 U
C2	5SBPP	1,310 U	1,310 U	1,310 U	1,310 U	1,310 U	1,310 U	3,010	3,520	1,510	3,010	1,310 U
СЗ	6SBPP	477 U	477 U	477 U	477 U	477 U	477 U	1,230	1,230	560	1,230	477 U
C4	7SBPP	836 U	836 U	836 U	836 U	836 U	836 U	1,560	1,730	866	1,730	836 U
D1	8SBPP	1,490 U	1,490 U	2,100	1,490 U	11,500	3,670	16,000	15,500	7,080	8,650	2,100
D2	9SBPP	698 U	698 U	698 U	698 U	698 U	698 U	1,220	1,020	698 U	814	2,040
D3	10SBPP	643 U	643 U	643 U	643 U	643 U	643 U	643 U	708	643 U	708	643 U
E1	11SBPP	1,020 U	1,020 U	1,020 U	1,020 U	1,360	1,750	4,870	5,840	2,340	3,890	1,560
E2	12SBPP	1,550 U	1,550 U	1,550 U	1,550 U	1,550 U	1,550 U	1,620	1,620	1,550 U	1,550 U	1,550 U
E3	13SBPP	955 U	955 U	955 U	955 U	955 U	955 U	1,260	1,440	955 U	1,260	955 U
E3	29SBPP	809 U	809 U	809 U	809 U	809 U	809 U	1,330	1,480	809 U	1,330	809 U
E4	14SBPP	325 U	325 U	325 U	325 U	325 U	325 U	427	512	325 U	325 U	325 U
E4	26SBPP	498 U	498 U	498 U	498 U	498 U	498 U	603	603	498 U	498 U	498 U
F1	15SBPP	1,710 U	1,710 U	1,710 U	1,710 U	1,710 U	1,710 U	2,820	2,680	1,710 U	2,190	1,710 U
F1	25SBPP	941 U	941 U	941 U	941 U	941 U	941 U	1,220	1,060	941 U	941 U	941 U
F2	16SBPP	927 U	927 U	927 U	927 U	927 U	927 U	1,630	1,630	975	1,140	927 U
F2	28SBPP	977 U	977 U	977 U	977 U	977 U	977 U	1,930	1,760	977 U	1,760	977 U
F3	17SBPP	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U
F4	18SBPP	967 U	967 U	967 U	967 U	967 U	967 U	1,190	1,360	967 U	1,190	967 U
F5	19SBPP	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U
F5	27SBPP	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U
G1	20SBPP	497 U	497 U	497 U	497 U	497 U	497 U	497 U	497 U	497 U	497 U	497 U
G2	21SBPP	1,490 U	1,490 U	1,490 U	1,490 U	1,490 U	1,490 U	3,660	3,170	1,710	3,170	1,490 U
G3	22SBPP	1,490 U	1,490 U	1,490 U	1,490 U	1,490 U	1,490 U	1,570	1,830	1,490 U	1,570	1,490 U
H1	23SBPP	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U

a Exceeds the ERL sediment screening standard

U Undetected. Values are detection limits.

J Estimated. Below CRDL and above IDL/MDL.

Station Name				POLYC	YCLIC AROMATIC	HYDROCARBO			PESTICIDES	PESTICIDES (ug/kg TOC)					
Name		\						Dibenzo							
A1 ISBPP	Station	Sample	Benzo(b)-	Benzo(k)-	Benzo(e)-	Benzo(a)	Indeno(1,2,3-cd)	• • •				1	ħ.		
81 25BPP		Name	fluoranthene	fluoranthene											
C1 4SBPP 2,360 U 2,360	A1	1SBPP	408 U	408 U											
C1 4SBPP 2,360 U 2,360	B1	2SBPP	1,400	1,510	1,610								11		
C1 4SBPP 2,360 U 2,360	B2	3SBPP	1,620	1,620	4,040				,						
C2 55BPP	C1	4SBPP	2,360 U	2,360 U	2,360 U	2,360 U									
C2 55BPP	C2	24SBPP	1,270	1,190	1,190	1,190	897 U	897 U			•				
C3 65BPP 896 1,010 896 1,010 784 477 U 784 576 U 1,120 a 576 U a 576 U 1,20 a 576 U a 576	C2	5SBPP	2,010	2,010	2,010	1,760	1,310 U	1,310 U				• • •			
SSBPP	СЗ	6SBPP	896	1,010	896	1,010	784								
D2 9SBPP 698 U 699 U 695 U 1,550 U 1	C4	7SBPP	1,380	1,380	1,210										
D3 10SBPP 643 U 1,180 648 U 643 U 11,180 648 U 643 U 614 U 1,180 U 1,	D1	8SBPP	4,720	5,240	3,930	6,550		1,490 U							
E1 11SBPP 2,340 2,530 1,950 2,340 1,170 1,020 U 1,360 1,020 U 1,950 1,020 U 1,	D2	9SBPP	698 U	698 U	698 U	698 U									
E2 12SBPP 1,550 U 1,55	D3	10SBPP	643 U	643 U	643 U	643 U	643 U	643 U	643 U						
E3 135BPP 1,080 1,080 955 U 1,080 955 U 1,080 955 U 1,080 955 U 955 U 1,800 955 U 955 U 955 U 1,800 955 U 1,800 955 U 955 U 1,800 955 U 1,800 955 U 1,800 955 U 955 U 1,800 955 U 1,800 955 U 1,800 955 U 1,800 955 U 955 U 1,800 U 1,400	E1	11SBPP	2,340												
E3 135BPP 1,080 1,080 955 U 1,080 955 U 1,080 955 U 1,080 955 U 955 U 1,800 955 U 955 U 955 U 1,800 955 U 1,800 955 U 955 U 1,800 955 U 1,800 955 U 1,800 955 U 955 U 1,800 955 U 1,800 955 U 1,800 955 U 1,800 955 U 955 U 1,800 U 1,400	E2	12SBPP	1,550 U	1,550 U					,		,				
E4 14SBPP 325 U 325 U 325 U 325 U 342 325 U 325	E3	13SBPP	1,080												
E4 14SBPP 325 U 325 U 325 U 325 U 342 325 U 325	E3	29SBPP	1,030												
F1 15SBPP 1,790 1,920 1,710 U 2,190 a 1,710 U 941 U 94	E4	14SBPP													
F1 25SBPP 941 U 1,320 U	E4	26SBPP	498 U	498 U	498 U										
F2 16SBPP 1,140 1,140 975 1,140 927 U 927 U 975 927 U 1,630 927 U	F1	15SBPP	1,790												
F2 285BPP 1,230 1,410 1,050 1,050 977 U 977 U 1,230 977 U 1,760 977 U 977 U 1,320 U 1,	F1	25SBPP	941 U	941 U	941 U										
F3 17SBPP 1,320 U 1,960 1,320 U 1,700 967 U 1,700 U 1,710 U 1,	F2	16SBPP	1,140												
F4 18SBPP 1,020 1,190 1,020 1,020 967 U 967 U 967 U 967 U 1,700 967 U 967 U 967 U 1,700		28SBPP													
F5 19SBPP 3,710 U 3,71	F3	17SBPP													
F5 27SBPP 4,310 U 4,31	F4	18SBPP	1,020	1,190	1,020										
G1 20SBPP 497 U 49		19SBPP	3,710 U	3,710 U	3,710 U										
G2 215BPP 2,440 2,680 1,950 2,190 1,950 1,490 U 2,190 1,490 U 2,440 1,490 U 1,	F5	27SBPP													
G3 22SBPP 1,490 U 2,610 1,490 U 1,490 U	G1	20SBPP	497 U												
G3 22SBPP 1,490 U 2,610 1,490 U 1,490 U H1 23SBPP 5,630 U 5,63	G2	21SBPP	2,440		•	•			•						
H1 23SBPP 5,630 U	G3														
	H1	23SBPP	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	8,460	5,630 U	5,630 U		

a Exceeds the ERL sediment screening standard

U Undetected. Values are detection limits.

J Estimated. Below CRDL and above IDL/MDL.

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

				Table 4-6		
		то	C-Normalized Co	ncentrations of Or	ganic Constituen	ts
			on Sedim	ent from Seal Bea	ch NWR	
			TOTALI	ZED VALUES (ug/k	g TOC)	
	1 1		Tota!	Total	-	
Station	Sample	Total	LMW	HMW	Total	Total
Name	Name	PCB	PAH	PAH	PAH	DDT
A1	1SBPP	408 U	1,220 U	2,450 U	3,670 U	1,390 Ja
B1	2SBPP	508 U	2,990 J	18,100 J	21,100 J	12,300 Ja
B2	3SBPP	1,390 U	4,170 U	24,100 J	28,300 J	9,470 Ja
C1	4SBPP	2,360 U	7,090 U	14,200 U	21,300 U	4,730 U a
C2	24SBPP	900 U	2,690 U	13,500 J	16,200 J	2,840 Ja
C2	5SBPP	1,310 U	3,920 U	22,300 J	26,200 J	8,840 Ja
C3	6SBPP	6,400 a	1,430 U	10,100 J	11,500 J	1,980 Ja
C4	7SBPP	836 U	2,510 U	14,900 J	17,400 J	2,990 Ja
D1	8SBPP	1,490 U	19,500 J	77,800 J	97,300 J	4,860 Ja
D2	9SBPP	698 U	2,100 U	7,880 J	9,980 J	1,400 U a
D3	10SBPP	643 U	1,930 U	4,630 J	6,560 J	2,150 Ja
E1	11SBPP	1,020 U	5,160 J	30,700 J	35,800 J	3,480 Ja
E2	12SBPP	1,550 U	4,650 U	4,020 J	8,670 J	3,110 U a
E3	13SBPP	955 U	2,870 U	10,700 J	13,500 J	3,230 Ja
E3	29SBPP	809 U	2,430 U	10,600 J	13,000 J	2,690 Ja
E4	14SBPP	325 U	976 U	2,920 J	3,900 J	651 U a
E4	26SBPP	498 U	1,490 U	3,700 J	5,190 J	996 U a
F1	15SBPP	1,710 U	5,120 U	17,400 J	22,500 J	4,750 Ja
F1	25SBPP	941 U	2,820 U	6,980 J	9,810 J	1,880 U a
F2	16SBPP	927 U	2,780 U	12,100 J	14,900 J	3,020 Ja
F2	28SBPP	977 U	2,930 U	13,400 J	16,300 J	3,220 Ja
F3	17SBPP	1,320 U	3,960 U	9,220 J	13,200 J	2,640 U a
F4	18SBPP	967 U	2,900 U	10,400 J	13,300 J	3,150 Ja
F5	19SBPP	3,710 U	11,100 U	2,230 U	13,400 U	7,420 U a
F5	27SBPP	4,310 U	12,900 U	25,800 U	38,800 U	8,610 U a
G1	20SBPP	497 U	1,490 U	2,980 U	4,470 U	993 U a
G2	21SBPP	1,490 U	4,460 U	26,600 J	31,100 J	4,670 Ja
G3 H1	22SBPP	1,490 U	4,460 U	11,600 J	16,100 J	4,840 Ja
	23SBPP	5,630 U	16,900 U	33,800 U	50,700 U	16,900 Ja

a Exceeds the ERL sediment screening standard

U Undetected. Values are detection limits.
J Estimated. Below CRDL and above IDL/MDL.

Average Moistur of Seal Beach	ble 4-7 re and Lipid Content NWR Invertebrates upled for Analysis	
Species	Average Lipid (%)	Average Moisture (%)
Invertebrates		
Horned Snail	0.15	36
Saltmarsh Snail	0.51	39
Striped Shore Crab	0.66	66
Clam	0.16	61
Invertebrate Average	0.46	47
Fish		
Topsmelt	1.04	78
Deepbody Anchovy	2.74	77
Northern Anchovy	1.35	81
Goby	1.28	80
Bay Goby	1.59	79
Killifish	1.16	78
Diamond Turbot	0.73	80
Queenfish	0.63	82
Fish Average	1.61	78

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

chemical analyses were analyzed for metals and organic compounds following

thawing and refreezing. The results from these salvaged samples were

compared with results from recollected samples of the same species from the

same location (but different sampling dates). The results were compared

statistically using paired t-tests for the most commonly detected metals and

organic compounds, which included chromium, copper, lead, zinc, and DDE

for all species tested. All t-tests showed no significant differences between

group means, indicating that the thawed sample results could be used in

combination with the other NWR study data. The data from the salvaged

samples, combined with the other NWR study data, yielded the results

discussed in this section.

Invertebrate samples. At least six species of invertebrates were collected at

the NWR sample locations over the course of the study. The frequency of

detection and maximum concentration for each chemical across invertebrate

species (and one sample of algae) are shown in Table 4-8. Analytical values

above MDLs varied greatly with analyte. A high frequency of metals was

detected, while organic contaminants were usually not detected. Table 4-9

shows the geometric mean contaminant concentrations for the NWR

invertebrate samples across sites. Only detected chemicals are shown.

Inorganics

The inorganics detected in fewer than half of the total analyses were cadmium,

mercury, molybdenum, nickel, selenium, and silver (Table 4-8). The highest

SCO100217D9.WP5\95\CF

4-47

CLE-C01-01F237-\$2-0001 Version: Final

Revision: 0

Final NWR Study Report CTO 0237

concentrations of inorganic chemicals were often found in the least frequently

collected species (Table 4-8). The most common, widely distributed food-chain

species, the horned snails, usually were less contaminated than other species.

The highest concentrations of cadmium, chromium, copper, lead, and nickel

were found in filamentous algae, ghost shrimp, and polychaete worms. The

maximum mercury value was found in a horned snail sample and the highest

zinc concentration was found in saltmarsh snails. In general, these patterns

were repeated in the geometric means, although many inorganic chemicals

were not detected in frequencies high enough for an accurate computation of

means, as shown in Table 4-9.

Organics

DDE in saltmarsh snails was the only organic chemical detected in more than

half of the samples. Only 10 of 70 organic analytes showed any detected

values in the NWR invertebrate tissue samples. Maximum values of individual

organic chemicals were spread among horned snails, saltmarsh snails, and

shore crabs (Table 4-8). DDD and PCBs were highest in the shore crab, while

the maximum DDE concentration was found in a horned snail sample.

Naphthalene, fluoranthenes, pyrenes, and 1,1-biphenyl concentrations were

highest in saltmarsh snail samples.

4-48

SCO100217D9.WP5\95\CF

4-49

Table 4-8 Frequency of Detection and Maximum Concentration of Chemicals in Seal Beach NWR Invertebrates and Algae

Page 1 of 2

	Horned Snall		Saltmarsh Snail		Striped Shore Crab		Ghost Shrimp		Clam		Polychaete Worm		Filamentous Algae	
Chemical ^a	Nb	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.
INORGANICS (mg/kg, d	ry weight)													
Aluminum	27/27	963	27/27	2,610	26/26	1,850	2/2	2,400	2/2	1,900	3/3	9,200	1/1	7,020
Arsenic	25/27	1.98	26/27	2.92	25/26	7.58	2/2	13.0	2/2	5.91	3/3	29.5	1/1	3.00
Barium	27/27	4.70	22/22	13.4	18/18	12.5	1/1	5.59					1/1	24.2
Boron	27/27	13.0	22/22	10.3	18/18	15.3	1/1	18.7			**		1/1	67.5
Cadmiµm	8/27	0.15	23/27	0.76	8/26	0.23	2/2	0.66	0/2		3/3	0.89	0/1	
Chromium	27/27	12.7	27/27	13.3	26/26	8.89	2/2	10.9	2/2	10.2	3/3	9.62	1/1	92.7
Copper	27/27	33.7	26/26	18.2	26/26	105	2/2	363	2/2	5.36	3/3	86,5	1/1	10.8
Iron	27/27	945	27/27	2,620	26/26	1,800	2/2	2,480	2/2	2,260	3/3	10,200	1/1	7,840
Lead	27/27	2.50	27/27	7.32	25/26	3.09	2/2	8.18	2/2	2.33	3/3	148	1/1	5.00
Magnesium	27/27	4,100	22/22	4,020	18/18	12,100	1/1	8,700					1/1	15,600
Manganese	27/27	181	27/27	155	26/26	85.8	2/2	103	2/2	144	3/3	214	1/1	147
Mercury	2/27	0.56	0/27		4/26	0.16	0/2		0/2		1/3	0.11	0/1	
Molybdenum	0/27		0/22		0/18		0/1						1/1	11.5
Nickel	0/27		2/27	3.20	0/26		2/2	5.74	0/2		3/3	9.35	1/1	78.9
Selenium	6/27	1.07	8/27	1.14	15/26	1.30	2/2	2.53	1/2	0.88	3/3	2.97	1/1	0.50
Silver	0/27		20/22	0.34	9/18	0.73							0/1	
Strontium	27/27	1,050	22/22	1,330	18/18	2,130	1/1	592					1/1	79.3
Vanadium	26/27	6.52	19/22	9.42	12/18	5.34	0/1						1/1	18.6
Zinc	27/27	61.6	27/27	542	26/26	62.8	2/2	87.3	2/2	106	3/3	113	1/1	38.8

Revision: 0

Table 4-8 Frequency of Detection and Maximum Concentration of Chemicals in Seal Beach NWR invertebrates and Algae

Page 2 of 2

		ned ail	Saltn Sn	narsh ail	•	i Shore rab	Ghost Shrimp				С	Clam		chaete orm		entous gae
Chemical ^a	Np	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.		
ORGANICS (mg/kg, wet	weight)															
1,1-Biphenyl	2/27	0.03	3/23	0.03										_		
4,4'-DDD					1/26	0.02					••			-		
4,4'-DDE	4/30	0.05	18/27	0.03	9/26	0.04			1/3	0.02				_		
C1-Pyrenes and Fluoranthenes			1/27	0.01										•		
C1-Naphthalenes	1/27	0.02												-		
C4-Naphthalenes			1/27	0.01										-		
Hexachlorobenzene	2/30	0.01												-		
PCB-1254	3/28	0.02	5/27	0.27	4/26	0.58			1/3	0.07				-		
PCB-1260					2/26	0.02										
PCB-TOTAL	3/30	0.02	5/27	0.28	4/26	0.61	••		1/3	0.07						

^aOnly those chemicals detected in these samples are listed.

^bN = Number with detectable concentration/number of samples analyzed.

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Version: Final Revision: 0

Table 4-9 Geometric Mean Concentrations of Contaminants in Seal Beach NWR Invertebrates

Sheet 1 of 1

			Specie	es]
Chemical	Horned Snail	Saltmarsh Snail	Striped Shore Crab	Ghost Shrimp	Clam	Polychaete Worms	All Speci
INORGANICS (mg/kg, dry w	veight)						
Aluminum	305.4	689.9	531.7	919.3	1,013	8,842	542
Arsenic	1.207	1.442	4.316	8.767	5.047	20.72	2.2
Barium	2.954	5.950	8.851	5.590	NC	NC	4.9
Boron	7.720	6.807	10.71	18.68	NC	NC	8.1
Cadmium	NC	0.203	NC	0.335	NC	0.584	_
Chromium	11.65	11.41	7.000	8.288	9.767	7.874	9.73
Copper	14.81	11.46	64.71	254.6	4.867	55.24	22.9
Lead	0.979	1.930	1.171	2.477	2.169	25.51	1.40
Magnesium	1,962	2,281	10,310	8,698	NC	NC	3,2
Manganese	65.49	62.15	32.28	65.44	74.663	163.9	54.2
Mercury	NC	NC	NC	NC	NC	NC	N
Nickel	NC	NC	NC	3.987	NC	8.726	N
Selenium	NC	NC	0.592	2.459	NC	2.068	N
Silver	NC	NC	NC	NC	NC	NC	N
Strontium	946.0	1,151	1,733	591.8	NĊ	NC	116
Vanadium	4.764	5.065	3.767	NC	NC	NC	4.55
Zinc	27.75	248.1	49.83	85.34	71.16	102.5	70.0
ORGANICS (mg/kg, wet wei	ght)						
1,1 Biphenyl	NC	NC	NC	NC	NC	NC	N
4,4'-DDD	NC	NC	NC	NC	NC	NC	N
4,4'-DDE	NC	0.010	NC	NC	NC	NC	N
C1-Fluoranthenes & Pyrenes	NC	NC	NC	NC	NC	NC	N
C1-Naphthalenes	NC	NC	NC	NC	NC	NC	N
C4-Naphthalenes	NC	NC	NC	NC	NC	NC	N
Hexachlorobenzene	NC	NC	NC	NC	NC	NC	N
PCB-1254	NC	NC	NC	NC	NC	NC	N
PCB-1260	NC	NC	NC	NC	NC	NC	N
PCB-TOTAL	NC	NC	NC	NC	NC	NC	N

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Spatial Patterns

Those species collected at all sample locations (horned snails, saltmarsh

snails, shore crabs) allowed a characterization of contaminant spatial

heterogeneity, although metals and organic maxima did not follow the same

general patterns in distribution. Table 4-10 lists the sample locations for each

of those species where the highest concentrations of eight potentially

significant chemicals were found. Up to three sample locations with the

highest contaminant concentrations are listed by analyte and species, and

several sample locations are consistently associated with elevated heavy metal

concentrations in invertebrate tissue. Sample locations with the highest values

(among the top three for at least two invertebrate species) include B-1, C-1,

and F-5 for cadmium, G-3 for copper, G-2 and E-4 for lead, and F-5 for zinc. In

contrast, the highest invertebrate concentrations of DDE were found in more

than one species at sample locations A-1 and B-1 and of PCBs at E-3, as

shown in Table 4-10. (See later discussion comparing observed concentrations

to assessment levels.)

Fish samples. Overall frequency of detection and maximum concentrations for

chemicals in fish are given in Table 4-11. Fish samples yielded detectable

values and calculatable geometric means with a greater frequency than did the

invertebrate samples. Geometric mean values for metals and organic

contaminants detected in NWR fish are shown in Table 4-12.

4-55

SC0100217D9.WP5\95\CF

The detection frequency for analytes in fish was slightly different than for

invertebrate species. Inorganics detected in fewer than half of the total

samples were beryllium, cadmium, mercury, molybdenum, nickel, and silver

(Table 4-11). In contrast, the only organic analytes detected in more than half

of the samples were the DDT derivatives, PCBs, phenanthrenes, and

anthracenes (Tables 4-11 and 4-12). Only 19 of 70 organic analytes showed

values above detection limits in the NWR fish tissue samples.

Inorganics

Metals of most interest for bioaccumulation and potential toxicity in fish tissue

include cadmium, chromium, copper, lead, mercury, nickel, and zinc. With the

exception of copper in killifish and mercury in deepbody anchovy, heavy

metals were found in highest concentrations in topsmelt samples (Table 4-11).

The same general pattern is shown by the geometric means (Table 4-12). As

an exception, the high mean concentrations of chromium and mercury in

diamond turbot were probably influenced by the small number of diamond

turbot samples.

Organics

The inorganic chemical pattern does not hold true for organic contaminants,

where high concentrations were more evenly divided between topsmelt and

deepbody anchovy. In general, the highest concentrations of biphenyls, DDD,

BHC, naphthalenes, and fluorenes were found in topsmelt (Table 4-11).

SCO100217D9.WP5\95\CF

4-56

Version: Final Revision: 0

Table 4-10 Biota Sampling Locations Where Highest Concentrations of Contaminants of Concern Were Found in Commonly Collected Species

		Invertebrates		Fish
Chemical ^a	Horned Snail	Saltmarsh Snail	Striped Shore Crab	Topsmelt
Cadmium	D-2	F-5	F-5	Pond 2
	G-1	A-1	B-1	F-2
	B-1	C-1	C-1	Pond 3
Chromium	D-2	G-3	D-3	Pond 3
	B-1	E-1	E-2	E-1
	F-2	A-1	E-4	B-1
Copper	C-1	F-1	H-1	Pond 3
	E-2	G-3	F-5	E-4
	D-2	E-4	G-3	B-1
Lead	G-2	G-2	E-4	Pond 3
	H-1	C-1	G-1	F-1
	B-1	E-4	F-1	Pond 4
Nickel		G-3		Pond 3
		E-4		E-1
				B-1
Zinc	D-3	F-5	C-2	F-2
	D-2	G-3	B-1	Pond 3
	E-2	B-2	F-5	E-3
DDE	B-1	A-1	B-1	Pond 1
	C-2	B-1	H-1	Pond 2
	A-1	B-2	G-2	C-4
PCBs	E-3	E-3	D-1	Pond 4
	F-1	B-2	H-1	C-4
1	E-1	C-1	F-4	Pond 1

^aFor each chemical, and within each species, the locations are listed at which highest concentrations were found. Blank spaces indicate that the chemical was found at less than five locations. Within each species, a particular location is listed only once, even if two samples of that species from that location had among the five highest concentrations (which sometimes occurred).

Table 4-11 Frequency of Detection and Maximum Concentration of Contaminants in Seal Beach NWR Fish

Page 1 of 2

	Tops	smelt	Deep Ancl	body hovy		thern hovy	G	oby	Ki	ilifish		mond irbot	Qu	eenfish
Chemical ^a	Np	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.
INORGANICS (mg/kg, o	iry weight)							*	****			· · · · · · · · · · · · · · · · · · ·		
Aluminum	33/33	3,860	9/9	1,140	6/6	800	6/6	565	5/5	1,300	2/2	439	1/1	160
Arsenic	33/33	3.52	9/9	3.67	6/6	4.43	6/6	4.68	5/5	4.14	2/2	3.05	1/1	2.50
Barium	25/25	20.1	8/8	5.69	6/6	4.61	5/5	4.97	4/4	8.81	2/2	3.19	1/1	1.82
Boron	24/24	107	7/7	100	6/6	29.4	4/4	49.1	4/4	18.4	1/2	9.13	1/1	24.3
Cadmium	3/33	0.25	2/9	0.15	0/6		1/6	0.16	1/5	0.12	0/2		0/1	
Chromium	33/33	71.2	4/9	18.0	4/6	6.64	5/6	15.3	5/5	18.4	2/2	43.9	1/1	5.61
Copper	33/33	16.2	9/9	3.56	6/6	4.91	6/6	8.56	5/5	21.1	2/2	5.56	1/1	3.66
Iron	32/33	4,220	9/9	1,140	6/6	842	6/6	659	5/5	1,540	2/2	624	1/1	177
Lead	27/33	7.78	2/9	0.64	3/6	0.87	3/6	2.81	2/5	1.31	0/2		0/1	
Magnesium	25/25	4,020	8/8	3,560	6/6	3,690	5/5	2,500	4/4	3,060	2/2	2,570	1/1	2,700
Manganese	33/33	113	9/9	29.0	6/6	26.4	6/6	55.8	5/5	73.5	2/2	59.4	1/1	22.8
Mercury	2/33	0.11	8/9	0.26	0/6		1/6	0.11	1/5	0.11	0/2		0/1	
Molybdenum	8/24	110	3/7	100	1/6	4.80	1/4	49.1	1/4	2.60	1/1	4.80	0/1	
Nickel	26/33	44.5	1/9	11.0	2/6	3.79	4/6	8.29	3/5	9.61	2/2	25.5	1/1	2.84
Selenium	32/33	2.44	9/9	2.40	6/6	1.40	6/6	2.71	5/5	1.49	2/2	1.88	1/1	1.04
Strontium	23/24	206	6/7	181	6/6	158	4/4	174	4/4	349	1/1	137	1/1	158
Vanadium	16/25	10.4	0/8		0/6		1/5	3.68	1/4	6.26	2/2	4.70	0/1	
Zinc	33/33	147	9/9	117	6/6	84.0	6/6	99.0	5/5	116	2/2	97.4	1/1	75.3

Table 4-11 Frequency of Detection and Maximum Concentration of Contaminants in Seal Beach NWR Fish

Page 2 of 2

	Tops	melt	Deep Ancl					oby	KI	llifish		mond irbot	Qu	eenfish
Chemical ^a	Np	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.
ORGANICS (mg/kg, wet v	weight)										***			
1,1-Biphenyl	1/10	0.02												
4,4'-DDD	6/35	0.08	11/11	0.08	3/5	0.03	2/4	0.02	1/4	0.02			1/1	0.03
4,4'-DDE	35/35	0.53	11/11	1.58	5/5	0.58	4/4	0.31	4/4	0.14	1/1	0.04	1/1	0.21
o,p'-DDE			1/11	0.02										
4,4'-DDT	1/35	0.02	9/11	0.04										
delta-BHC	1/35	0.01			**									
C1-Naphthalenes	2/37	0.01												*-
C2-Naphthalenes	1/37	0.01			*-					••				
C3-Fluorenes	2/37	0.04			1/5	0.02	-							
C3-Naphthalenes	1/37	0.01	1/11	0.03	**									
C3-Phenanthrenes and Anthracenes					1/5	0.02								
C4-Naphthalenes			1/11	0.03										-
cis-Nonachlor	1/35	0.02	3/11	0.03				T						-
trans-Nonachlor	1/35	0.02	10/11	0.04	1/5	0.01	1/4	0.02						
Naphthalene	1/37	0.01										•-		_
PCB-1254	19/35	0.44	10/11	0.73	4/5	0.06	3/4	0.15	3/4	0.10	1/1	0.02	1/1	0.05
PCB-1260	1/35	0.02		0.02	1/5	0.02						-		-
PCB-TOTAL	11/35	0.46	10/11	0.74	4/5	0.08	3/4	0.15	3/4	0.10	1/1	0.02	1/1	0.05

^aOnly those chemicals detected in these samples are listed.

^bN = Number with detectable concentration/number of samples analyzed.

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Table 4-12 Geometric Mean Concentrations of Contaminants in Seal Beach NWR Fish												
	Geometri	c Mean Conce	entrations of C	ontaminan	nts in Seal Bea	ach NWR Fish	ъ.	1 -60				
				Charles				age 1 of 2				
		Deepbody	Northern	Species		Diamond		LIA II				
Chemical ^a	Topsmelt	Anchovy	Anchovy	Goby	Killifish	Turbot	Queenfish	Species				
INORGANICS (mg/	kg, dry weight	1)				<u> </u>		h-,				
Aluminum	929.5	171.6	433.8	360.9	254.2	387.1	159.5	534.3				
Arsenic	2.09	2.28	3.35	2.53	2.00	1.83	2.50	2.22				
Barium	5.97	1.19	2.30	2.60	3.68	3.17	1.82	3.54				
Boron	15.71	16.63	11.76	13.25	12.95	9.13	24.28	14.61				
Cadmium	NC	NC	NC	NC	NC	NC	NC	NC				
Chromium	14.01	4.10	4.45	6.75	7.87	27.55	5.61	10.10				
Copper	7.64	2.71	4.56	4.35	10.34	4.45	3.66	5.91				
Iron	1,021	207.5	498.0	425.7	339.7	533.5	176.7	614.0				
Lead	1.19	0.26	0.36	0.64	NC	NC	NC	0.74				
Magnesium	3,118	2,227	2,789	2,110	2,444	2,246	2,704	2,726				
Manganese	28.15	14.64	20.86	31.96	32.52	54.67	22.75	26.03				
Mercury	NC	0.16	NC	NC	NC	NC	NC	NC				
Molybdenum	NC	NC	NC	NC	NC	NC	NC	NC				
Nickel	9.58	NC	NC	4.54	4.47	17.61	2.84	5.10				
Selenium	1.18	1.24	1.29	1.50	1.24	1.66	1.04	1.24				
Strontium	114.6	51.69	76.86	46.02	273.4	137.00	158.2	97.34				
Vanadium	5.96	NC	NC	NC	NC	4.22	NC	3.74				
Zinc	120.3	97.82	80.00	85.18	103.3	84.45	75.30	105.3				
ORGANICS (mg/kg	, wet weight)											
1,1 Biphenyl	NC	NC	NC	NC	NC	NC	NC	NC				
4,4'-DDD	NC	0.05	0.01	0.02	NC	NC	0.03	0.02				
4,4'-DDE	0.13	0.61	0.23	0.14	0.09	0.04	0.21	0.18				
o,p'-DDE	NC	NC	NC	NC	NC	NC	NC	. NC				
4,4'-DDT	NC	0.02	NC	NC	NC	NC	NC	NC				
BHC-delta	NC	NC	NC	NC	NC	NC	NC	NC				
C1-Naphthalenes	NC	NC	NC	NC	NC	NC	NC	NC				
C2-Naphthalenes	NC	NC	NC	NC	NC	NC	NC	NC				
C3-Fluorenes	NC	NC	NC	NC	NC	NC	NC	NC				
C3-Naphthalenes	NC	NC	NC	NC	NC	NC	NC	NC				
C3-Phenanthrenes and Anthracenes	NC	NC	0.02	NC	NC	NC	NC	NC				
C4-Naphthalenes	NC	NC	NC	NC	NC	NC	NC	NC				
cis-Nonachior	NC	NC	_ NC	NC	NC	NC	NC	NC				
trans-Nonachlor	NC	0.03	NC	NC	NC	NC	NC	NC				

SCO100217F8.WP5\95

Table 4-12 Geometric Mean Concentrations of Contaminants in Seal Beach NWR Fish

Page 2 of 2

	Species							
Chemical ^a	Topsmelt	Deepbody Anchovy	Northern Anchovy	Goby	Killifish	Diamond Turbot	Queenfish	All Species
Naphthalene	NC	NC	NC	NC	NC	NC	NC	NC
PCB-1254	0.04	0.15	0.04	0.09	0.03	0.02	0.05	0.05
PCB-1260	NC	NC	NC	NC	NC	NC	NC	NC
PCB-TOTAL	0.04	0.17	0.04	0.09	0.04	0.02	0.05	0.05

NC = Geometric mean not computed because detected concentration occurred in fewer than half the samples.

Total PCB values are a sum of PCB-1254 and PCB-1260 values for any particular sample. PCB-1254 and PCB-1260 were the only PCBs identified in NWR biota samples. These PCBs are the only two that are typically found in biota. For deepbody anchovy and killifish, adequate detections occurred to allow computations of PCB-1254 and PCB-TOTAL geometric means, but not for PCB-1260. The minimal number of PCB-1260 values detected for these species (fewer than half the total) was used in the computation of PCB-TOTAL values, and therefore, resulted in PCB-TOTAL means that are slightly greater than the PCB-1254 means. The PCB-TOTAL geometric means shown in Table 4-12 are the means of summed values, not the sum of means.

Version: Final Revision: 0

Revision: 0

However, the highest concentrations of DDT, DDE, and PCBs were found in deepbody anchovy, the species with the greatest lipid content of the fish species analyzed (Table 4-7).

Spatial Patterns

Topsmelt was the only fish species collected in sufficient distribution and abundance throughout the NWR to characterize the spatial heterogeneity of fish tissue contamination. In general, the four POLB ponds at the ends of the east and west arms of the tidal saltmarsh were the areas from which samples yielded the highest contaminant concentrations. For heavy metals, Pond 3 had the greatest number of maximum concentrations (Table 4-10). The organochlorine compound maxima were most commonly seen in topsmelt samples from Pond 1 and sample location C-4.

Microtox® bioassays. Sediment with an EC₅₀ (effective concentration at which the test organism's light output is decreased by 50 percent) of greater than 20,000 parts per million (ppm) (by sediment weight) is considered nontoxic. The closer the sample concentration is to zero, the more toxic the sediment. Using this criterion, all the tested sediments were toxic, and only those from locations C-1, G-1, and H-1 had values greater than 10,000 ppm, as shown on Table 4-13. Sediments from four sample locations (C-3, C-4, B-1, and B-2) had EC₅₀ values lower than 1,000 ppm, indicating that they were the most toxic. Other stations were in the intermediate range of toxicity.

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Statistical comparisons (using correlations) were used to test relationships

between the Microtox® bioassay results and analytical results for sediments

(both of which were converted to logarithms for statistical testing because of

the distribution of values). The highest correlation was between toxicity and

acid volatile sulfide ($r^2 = 0.723$). Table 4-14 indicates that, although there also

was a significant correlation between toxicity and a few metals (zinc, copper,

chromium, and nickel) or 4,4'-DDE, those relationships were much weaker than

the one with sulfide, which occurs naturally in the sediments.

Among the four metals that were statistically correlated with toxicity, molar

concentrations of sulfide always exceeded the molar concentration of metals.

except for that of zinc at sample locations A-1, C-1, and C-2. (When molar

concentrations of sulfide exceed those of metals, the metals are probably not

toxic to benthic biota.) These three sample locations were among those with

intermediate or low toxicity as measured by the Microtox® bioassays. Toxicity,

therefore, is most attributable to sulfide concentrations, naturally occurring toxic

compounds, rather than to the metals or organic contaminants of concern.

Least tern eggs. Concentrations of inorganic and organic chemicals detected

in the least tern eggs are presented in Table 4-15.

Inorganics

Eight elements were measurable in all eggs analyzed for inorganics, whereas

six others were found only in three or fewer eggs. Comparisons of geometric

4-68

SCO100217D9.WP5\95\CF

Table 4-13 Ranking of EC ₅₀ Values for Sediments in Bioassays						
Group No. ^a	Station No.	EC ₅₀ (ppm)				
1	H-1 C-1 G-1	16,743 13,622 11,340				
2	C-2 D-2 G-2 F-1 D-1	5,483 5,036 4,886 3,832 3,366				
3	F-3 D-3 A-1 E-4 F-5 E-1 E-3	2,776 2,295 2,270 2,158 1,894 1,851 1,690				
4	G-3 F-2 E-2 F-4	1,484 1,282 1,054 1,014				
5	B-2 B-1 C-4 C-3	937 734 468 395				

^aResults are listed in ranked order and divided into the following subjectively defined groups (range in ppm): Group 1: 10,001-20,000; Group 2: 3,001-10,000; Group 3: 1,501-3,000; Group 4: 1,001-1,500; Group 5: 0-1,000.

Note: EC_{50} = Effective concentration at which the test organism's light output is decreased by 50 percent. (The closer the sample concentration is to zero, the more toxic the sediment, and values greater than 20,000 ppm are considered nontoxic.)

Revision: 0

Table 4-14 Relationship Between Toxicity Measured by Microtox® and Various Analytes				
Analyte	R Square	Probability		
Acid volatile sulfide	0.723	<0.00001		
Zinc	0.394	<0.0014		
Copper	0.297	<0.0072		
Chromium	0.208	<0.0286		
Nickel	0.172	<0.0494		
Arsenic	0.022	<0.502		
Lead	<0.001	>0.99		
4,4'-DDE ^a	0.197	< 0.0338		

Note: All analytes and toxicity values (EC₅₀) converted to logarithms.

Version: Final Revision: 0

Table 4-15 Inorganic and Organic Chemicals Found in Least Tern Eggs Salvaged at Seal Beach NWR								
Measurable Concentrations ^a								
Chemical	N	Geometric Mean	Maximum					
Inorganics (N=9)								
Aluminum	1	NCD	12.2					
Arsenic	3	NC	0.735					
Boron	9	8.37	21.8					
Cadmium	2 .	NC	0.13					
Copper	9	3.09	4.76					
Iron	9	133	165.					
Magnesium	9	455	555.					
Manganese	9	Overall = 2.23 1991 = 2.02 1993 = 2.71	3.07					
Mercury	9	0.82	1.26					
Molybdenum	1	NC	2.32					
Selenium	3	NC	2.71					
Strontium	9	Overall = 4.17 1991 = 5.11 1993 = 2.77	6.36					
Zinc	9	61.5	72.8					
Organics (N = 11)		- CMI/O						
4,4'-DDE	11	Overall = 3.65 1991 = 1.96 1993 = 5.19	6.98					
PCB-1254	11	(0.99)	(2.03)					
PCB-1260	1	NC	(0.25)					
PCB-Total	11	(1.11) (2.28)						

^aN = Number of samples with measurable concentrations. Inorganics reported as mg/kg dry weight; organics as mg/kg wet weight. Chemicals not listed were not measurable in any samples. Values shown in parentheses were estimated on the basis of moisture and lipid levels in the eggs.

NC = Not completed because chemical was measurable in less than half the samples.

Note: Means in different years are shown only for those analytes with statistically different means between years (t-test, P<0.05)

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

means for the eight inorganics between years (1991 and 1993) indicate that

only manganese and strontium were different between years (t-test, P<0.05).

However, the two elements showed opposite trends between years

(Table 4-15).

Organics

DDE and PCBs were the only organic chemicals found at measurable levels in

the least tern eggs, and both DDE and PCB-1254 occurred at measurable

levels in all eggs. Comparisons of geometric means for these two chemicals

indicate that 4,4'-DDE was in higher concentration in least tern eggs in 1993

than in 1991 (t-test, P<0.05), while other analytes indicated no differences

between years.

Revision: 0

5.0 DISCUSSION

This section summarizes the implications of the results from the watershed and land use

evaluation, sediment transport evaluation, and sediment and biota contaminant analyses

for assessing the status of contaminants in the NWR and the impacts of operations at

NWS Seal Beach on the NWR.

5.1 Impacts of the POLB Ponds on Sediment Deposition and Erosion Patterns

The construction of the four POLB mitigation ponds at the landward ends of the west

and east arms of the tidal saltmarsh in the NWR in 1990 has resulted in significant

changes in sediment erosion and deposition in the NWR. The presence of the POLB

ponds results in greater amounts of water pulled into the tidal saltmarsh during each

tidal cycle (tidal prism) and higher current velocities in the tidal channels than was the

case prior to their construction.

The increased tidal prism resulting from the construction of the POLB ponds also has

increased intrusion of water from Anaheim Bay into the NWR tidal saltmarsh system.

This results in significantly more water from Anaheim Bay flowing into the NWR during

tidal exchange than was the case prior to the construction of the POLB ponds. Tidal

exchange with Anaheim Bay is one potential source of contaminants into the NWR tidal

saltmarsh system because runoff from virtually the entire urban Anaheim Bay watershed

surrounding the NWR enters Anaheim Bay directly or from Bolsa Chica Channel and

Huntington Harbour. EPA STORET data on water quality at sample points throughout

SCO100217D9.WP5\95\CF

CLE-C01-01F237-S2-0001

Version: Final

the watershed indicate the potential for addition of contaminants to the NWR from this

increased flow from Anaheim Bay. Additionally, stratification of the potentially

contaminated freshwater (which is less dense than seawater) from the Bolsa Chica

Channel over the seawater of Anaheim Bay would reduce mixing and dilution of this

contaminated water with relatively "clean" ocean water, potentially resulting in greater

concentrations of contaminants entering the NWR.

Surface runoff from a portion of the NWS subbasin discharges into the western arm of

the tidal saltmarsh near the intersection of Kitts Highway and Bolsa Avenue. Agricultural

runoff from the NWS discharges into the Bolsa Cell (north of Bolsa Avenue, south of

railroad tracks [Figure 1-2]) of the NWR in an area that is connected hydraulically to the

central arm of the NWR. Elevated contaminant concentrations identified in sediments

and biota in and around the Bolsa Cell indicate possible contribution of contaminants

from the NWS Seal Beach.

Based on State of California (1993) draft criteria for ranking toxic hot spots and the

chemical analysis of sediments, the NWR could rank between low and moderate as a

toxic hot spot. The area of potential concern for sediments is the northwest corner of

the NWR, particularly at sample locations A-1, B-1, and C-3 where several metals were

consistently elevated.

The impacts of the construction of the POLB ponds must be considered when

evaluating the results of the sediment chemical analyses. Changes in the erosional and

depositional characteristics in the tidal saltmarsh (as discussed in Subsection 4.2.2) can

affect the distribution of contaminants in the NWR. Some areas that were not prone to

Revision: 0

erosion prior to the construction of the POLB ponds are now expected to experience

erosion. For example, prior to the POLB pond construction, there was moderate

potential for erosion in the lower two thirds of the west arm of the tidal saltmarsh. After

POLB pond construction, velocities in the channel increased to the point that the entire

length of the west arm below Bolsa Avenue has high erosion potential (see Figures 4-3

and 4-4). Additionally, in sample locations in areas that experienced deposition

pre-POLB pond construction, invertebrates tended to have higher concentrations of

chemicals (B-1, C-2, E-4, F-5, G-3). The result is that contamination in areas that are

subject to increased erosion (such as B-1) could be reduced, while areas of deposition

(the POLB ponds) could experience increased contamination.

Changes in the erosional and depositional characteristics of the tidal saltmarsh will

result in a redistribution of sediments occurring over an unknown period of time. The

time required for the transition from the pre-POLB pond to post-POLB pond conditions

depends on the characteristics of sediments in the affected areas and coverage of the

tidal channels by eel grass (which reduces erosion, but is, itself, susceptible to scouring

by increased tidal velocities). It is possible that when samples for the NWR Study were

taken in 1992, 2 years following the construction of the POLB ponds, sediment

distribution was, and still may be, in flux. Therefore, sediment samples collected in 1992

may not reflect current or future sediment and contaminant distributions.

Areas of deposition indicated by the sediment transport evaluation include the POLB

ponds, fish from which had elevated contaminant concentrations. Increased erosion

appears to affect nearby sample locations (in particular, sample locations A-1 and B-1)

in which sediment contaminant concentrations were elevated. Sediment sampling did

SCO100217D9.WP5\95\CF

ersion: rinai Revision: 0

not include POLB ponds because they had been recently excavated during

construction.

5.2 Impacts of Contaminants on NWR Endangered Species

5.2.1 Chemicals of Potential Concern

Exposure of birds to environmental contaminants can be assessed by

measuring concentrations in their food, water, air, or body tissues (Ohlendorf et

al. 1978; Ohlendorf 1993). For the current study, the most directly applicable

values are those for dietary exposure that are summarized in the USFWS

Contaminant Hazard Reviews published by Eisler (1985 through 1993).

Assessment values for inorganics available from that source, as well as those

provided by Puls (1988) and the National Academy of Sciences (NAS) (NAS

1980), are presented in Table 5-1. Except for cadmium, copper, and lead

levels given by Puls (1988), values from that source and those from NAS

(1980) are based on poultry.

Effect levels in wild birds for many chemicals, and especially in environmentally

realistic chemical forms and concentrations, have not been clearly established.

For example, Eisler (1985a) states for cadmium that "Until other data become

available, wildlife dietary levels exceeding 100 μ g Cd/kg fresh weight on a

sustained basis should be viewed with caution." However, feeding studies with

mallards (Anas platyrhynchos) indicated that diets containing 200 mg Cd/kg

produced no obvious deleterious effects after 13 weeks, although cadmium

Revision: 0

Table 5-1 Assessment Values for Concentrations of Inorganics (mg/kg) in Bird Diets

Sheet 1 of 2

			Reference/Sources				
Element			Puls ^b				
	Eisler ^a Acceptable	Normal/Adequate	High	Toxic	Maximum Tolerable Level		
Aluminum	NA	<500	NA	>1,500	200 ^d		
Arsenic ^e	<100 DW ^f	100 ^f	NA	NA	100 ^f		
Barium	NA	NA	NA	NA	(20) ^d		
Boron ,	<13 FW	NA	NA	NA	(150)		
Cadmium	<0.1 FW	<5	10 - 20	>20	0.5 ^g		
Chromium	<10 DW	5 - 20	NA	>300	1,000		
Copper	NA	10 - 50	100 - 200	>200	300		
Iron	NA	80	NA	200 - 2,000	1,000		
Lead	<10 DW	NA	25 ^h	NA	30 ^g		
Magnesium	NA	600 - 3,000	3,000 - 9,000	6,400 - 12,800	(3,000)		
Manganese	NA	60 - 200	1,000 - 4,000	>4,000	2,000		
Mercury	<0.1 FW	<0.1	1 - 50	5 - 100	2 ^g		
Molybdenum	<200 DW	0.03 - 1.0	3 - 10	>200	100		
Nickel	NA	0.1 - 3.0	100 - 300	700 - 1,000	300		
Selenium	<6 DW ⁱ	0.3 - 1.1	3 - 5	>5	2		

Revision: 0

5-7

Table 5-1 Assessment Values for Concentrations of Inorganics (mg/kg) in Bird Diets

Sheet 2 of 2

	Reference/Sources						
			National Academy of Sciences ^C				
Eisler ^a Element Acceptable		Normal/Adequate	High	Toxic	Maximum Tolerable Level		
Silver	NA	10 - 100	100	NA	100		
Strontium	NA	NA	NA	>3,000	3,000		
Vanadium	NA	0.1 - 3.0	6 - 50	100 - 800	10		
Zinc	<178 DW	98 - 200	800 - 2,000	>2,000	1,000		

^aEisler, 1985a, 1985b, 1986a, 1987a, 1988a, 1988b, 1989, 1990a, 1993.

DW Dry weight Fresh weight FW = Not available NA

^bPuls, 1988; all values given as DW for poultry or waterfowl (when available).

^cNAS, 1980; all values given as DW for poultry; values in parentheses were extrapolated from other species.

dAs soluble salts of high bioavailability. Higher levels of less soluble forms found in natural substances can be tolerated.

^eBased also on Phillips, 1990, and Stanley et al., 1994.

Arsenic in organic form, which is less toxic than inorganic arsenic.

⁹Level based on human food residue considerations.

hMaximum no effect level for waterfowl.

Based also on Ohlendorf, 1989, and USDI, 1993.

Revision: 0

had accumulated to high levels in the ducks' kidneys. Species differences in

sensitivity to various chemicals measured in the current study are unknown.

Therefore, the values used for assessment of analytical results are generally

the more conservative ones. For each chemical of potential concern, a final

assessment value (generally the No Observed Effect Level [NOEL] or a

comparable value) was selected for comparison with observed concentrations

in invertebrates or fish (Table 5-2). Maximum observed concentrations

compared to assessment values are considered to be the most conservative

indicators of potential adverse effect to the endangered least tern and clapper

rail. Assessment of the potential toxicity of contaminants of concern in the

NWR has been evaluated based on collected food-chain species eaten by

these birds, but applies to other bird species in the NWR with comparable

diets.

Further comparisons for rail diets were made by comparing the maximum

mean for the combined three species of invertebrates at an individual sample

location (potentially representing the diet of a rail in a localized home range) to

the assessment values (Table 5-2). For tern diets, the maximum mean for an

individual fish species (across all sample locations because terns would likely

feed in several areas within the NWR) was compared for each chemical to the

assessment. The comparisons are considered to be representative of potential

exposures for rails and terns because they reflect the likely feeding patterns of

the two species.

5-9

SCO100217D9.WP5\95\CF

Revision: 0

Inorganics

Aluminum. The chronic toxicity of aluminum is low (Scheuhammer 1987) and,

like many of the other inorganics, its toxicity depends greatly on the chemical

form found in the diet. Toxicity of aluminum also depends on the dietary levels

of other elements (e.g., calcium and phosphorus) available to the birds. As

noted in Tables 5-1 and 5-2, the maximum tolerable level (MTL) for aluminum

given by NAS (1980) is based on soluble salts of high bioavailability, but higher

levels of less soluble forms found in natural substances can be tolerated.

Because of its expected low toxicity to birds, aluminum is not considered a

COC for clapper rails and least terns at the NWR.

Arsenic. Arsenic consistently occurred in invertebrates and fish collected in

the NWR at concentrations that were much lower than the maximum dietary

levels considered acceptable for birds (Tables 4-8, 4-11, and 5-1). Thus,

arsenic is not considered a COC for clapper rails and least terns at the NWR.

Barium. Barium is similar to aluminum in that the MTL given by NAS (1980) for

poultry is based on highly bioavailable soluble salts (Table 5-1). The maximum

detected concentrations of barium in invertebrates and fish in the NWR were

approximately equal to that MTL. Because this barium is probably much less

bioavailable than those inorganic forms, barium is not considered a concern for

5-10

clapper rails and least terns at the NWR.

SCO100217D9.WP5\95\CF

0.34

Maximum Mean of Individual

Fish Species Across all

Stations

Maximum Mean for Three Species of

Invertebrates at an Individual

Station

0.198

0.17

Maximum Observed Values

Tern Food: Fish

0.74

1.48

0.099

Rail Food: Invertebrates

						rtair r ood: iiir					1		10113
	Literat	ure	Final				Ratio		Ratio		Ratio		Ratio
Chemical	Assessmen	Weight	Assessment		Assessment		(Maximum:		(Maximum:	Maximum	(Maximum Mean:	Maximum	(Maximum Mean:
Inorganics	Value	basis	Values (DW)	Qualifier	Based On (1)	Maximum (DW)	ssessment	Maximum (DW)	ssessment	Mean (DW)	Assessment)	Mean (DW)	Assessment)
Aluminum	200	DW	200	Α	NAS Max.tolerable	9200	46.00	3860	19,30	1336.00	6.68	929.50	4,65
Arsenic	100	DW	100	В	Eisler:"acceptable"	29.5	0.30	4.68	0.05	3.64	0.04	3.35	0.03
Barium	20	DW	20	Α	NAS Max tolerable	13.4	0.67	20.1	1.01	7.30	0.37	5.97	0.30
Boron	13	FW	52		Eisler:"acceptable"	18.7	0.36	107	2.06	12.20	0.23	24.28	0.47
Cadmium	0.1	FW	0.4	С	Eisler:"acceptable"	0.89	2.23	0.25	0.63	0.38	0.94	0.14	0.34
Chromium	10	FW	40		Eisler:"acceptable"	13.3	0.33	71.2	1,78	11.50	0.29	27.55	0.69
Copper	50	DW	50		Puls, Adequate-Hig	363	7.26	16.2	0.32	30.80	0.62	10.80	0.22
Iron	80	DW	1000		NAS Max.tolerable	10200	10,20	4220	4.22	1426.00	1.43	1021.00	1.02
Lead	10	DW	10	ļ	Eisler:"acceptable"	148	14.80	7.78	0.78	2.64	0.26	1.19	0.12
Magnesium	3000	DW	3000		Puls, Adequate-Hig	12100	4.03	4020	1.34	6778.00	2.26	3117.00	1.04
Manganese	200	DW	200		Puls, Adequate-Hig	214	1.07	113	0.57	148.40	0.74	54.70	0.27
Mercury	0.1	FW	0.4		Eisler:"acceptable"	0.56 **	1.40	0.26	0.65	0.56**	1.40	0.16	0.40
Molybdenum	n 200	DW	200	}	Eisler:"acceptable"			110	0.55			18.20	0.09
Nickel	100	DW	100		Puls, Adequate-Hig	9.35	0.09	44.5	0.45	3.20	0.03	17.60	0.18
Selenium	6	DW	6	D	Eisler:"acceptable"	2.97	0.50	2.71	0.45	1.14	0.19	1.66	0.28
Silver	100	DW	100		NAS Max.tolerable	0.73	0.01			0.73	0.01		
Strontium	3000	DW	3000		NAS Max.tolerable	2130	0.71	349	0.12	1347.00	0.45	273.40	0.09
Vanadium	10	DW	10		NAS Max.tolerable	9.42	0.94	10.4	1.04	7.77	0.78	6.26	0.63
Zinc	178	DW	178		Eisler:"acceptable"	542	3.04	147	0.83	113.00	0.63	120.30	0.68
											<u> </u>		
Organic Co	Organic Compounds												
						Rail food: Inv	rertebrates	Tern food	d: Fish	Invert	ebrates	F	ish
1						1	Ratio		Ratio		Ratio	[Ratio
I			Assessment		Assessment	Invertebrate	(Maximum:	Fish	(Maximum:		(Maximum:	1	(Maximum:
L			Values (FW)		Based On (2)	Maximum (FW)	ssessmen	Maximum (FW)	ssessment	Maximum (FW)	Assessment)	Maximum (FW)	Assessment)
DDE	0.05	FW	0.05		NAS	0.05	1.00	1.58	31.60	0.036	0.72	0.62	12.40

DW = dry weight

PCBs

FW = fresh weight

DDE = 1,1-dichloro-2,2-bis (4 chlorophenyl) ethene

FW

PCB = Polychlorinated biphenyls

MTRL = Maximum Tissue Residue Levels

0.50

- * FW Assessment values multiplied times 4 to yield estimate of DW value (assuming 75 percent water)
- ** Figure represents value for horned snail only, thus mean and maximum are equal.

0.50

- (1) See Table 5-1 for references and further explanation of assessment values.
- (2) See Table 5-4 and text for further explanation of assessment values. NAS guideline for total DDT and total PCB in whole fish used for assessment.

NAS

0.61

Shaded ratios show cases where mean concentration of at least one species exceeded assessment value.

QUALIFIERS:

- A Soluble salts of high bioavailability. Higher natural levels may be tolerated.
- B Arsenic in organic form, which is less toxic than inorganic arsenic.
- C Cadmium value is conservative- see text for further discussion.
- D Based on Ohlendorf, 1989 and USDI, 1993.

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

Boron. Maximum concentrations of boron in algae, invertebrates, and fish

were similar to the maximum dietary concentrations considered acceptable for

birds (Tables 5-1 and 5-2). However, these maximum detected concentrations

were also similar to the geometric mean boron concentrations found in aquatic

plants, invertebrates, and fish at the Volta Wildlife Area located in the San

Joaquin Valley; (Schuler, 1987; Hothem and Ohlendorf, 1989), where

reproductive success of aquatic birds was normal (Ohlendorf et al., 1989).

Mean boron in invertebrates at all sample locations and mean boron levels in

all fish species were lower than the assessment level. Therefore, boron is not

expected to cause adverse effects in clapper rails and least terns at the NWR.

Cadmium. Maximum concentrations of cadmium in invertebrates (0.89 mg/kg

dry weight) were slightly higher than the dietary level of concern put forth by

Eisler (1985a), but the maximum in fish and individual sample location means

for invertebrates were lower (Table 5-2). Based on studies with mallards,

cadmium does bioaccumulate in some bird tissues, but the threshold dietary

levels for adverse effects are not well known (White and Finley, 1978; White et

al., 1978; Cain et al., 1983). Although cadmium at the average levels found in

invertebrates probably would not adversely affect birds that consume

invertebrates at the NWR, it is considered a COC because of its potential

toxicity.

Chromium. Chromium concentrations in invertebrates (Table 4-8) and fish

(Table 4-11) sometimes exceeded the dietary concentrations considered by

Eisler (1986a) to be acceptable for birds (Table 5-1). The geometric mean

5-13

SCO100217D9.WP5\95\CF

chromium concentrations in turbot (27.5 mg/kg) and topsmelt (14.0 mg/kg), as well as all fish species combined (10.1 mg/kg) (Table 4-12), were at or above that level, although most were within the normal/adequate range for poultry (Puls, 1988) and all were below the MTL for poultry (NAS, 1980). Eisler (1986a) also states, "...available evidence suggests that organs and tissues of fish and wildlife that contain >4.0 mg total Cr/kg dry weight should be viewed as presumptive evidence of chromium contamination." The geometric means for chromium in horned snails (11.6 mg/kg) and saltmarsh snails (11.4 mg/kg) (Table 4-9) also slightly exceeded the 10 mg/kg value given by Eisler (Table 5-1). Thus, chromium is considered a COC for clapper rails and least terns at the NWR.

Copper. The toxicological significance of copper in diets of wild birds is not clear, but concentrations exceeding 200 or 300 mg/kg in poultry diets are considered toxic or excessive (Table 5-1). Maximum copper concentrations in most invertebrates and fish were in the normal/adequate range or between that and high dietary levels for poultry. Maximum copper concentrations in crabs were within the high range and those in ghost shrimp exceeded the toxic and MTL values for poultry. However, mean values within and across sample locations did no exceed assessment values (Table 5-2). Comparable values for ghost shrimp from other California locations are similar to Seal Beach concentrations (Jenkins 1980). In addition, data for seabirds indicate that copper levels in bird tissues are regulated (Furness and Rainbow 1990) and toxicity is probably unlikely. Therefore, direct toxicity of copper to clapper rails and least terns at the NWR is not considered to be of concern.

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Iron, Magnesium, Manganese. Iron, magnesium, and manganese are

essential nutrients in animal diets that have low toxicity to poultry (Table 5-1).

Their occurrence in marine ecosystems is largely the result of natural rather

than anthropogenic causes, and concentrations in bird tissues are

physiologically regulated (Furness and Rainbow 1990). Thus, they are not

considered COCs for clapper rails and least terns at the NWR.

Lead. Lead concentrations in polychaetes (Table 4-8) reached levels several

times higher than those considered by Eisler (1988b) to be acceptable in bird

diets, high for waterfowl diets by Puls (1988), and the MTL for poultry

(Table 5-1). Consequently, lead is considered a COC based on individual

sample maxima. However, mean concentrations in diet items that more closely

approximate exposure do not exceed the assessment value (Table 5-2).

Mercury. Mercury was seldom detected in biota samples, and the maximum

concentration was less than 0.5 mg/kg wet weight, which slightly exceeds the

assessment value (Table 5-2). This low level of mercury in the NWR biota is

reflected by the low concentrations found in clapper rail eggs analyzed

separately by the USFWS (Schwarzbach, 1994). Mercury is not a COC at the

NWR.

SCQ100217D9.WP5\95\CF

Molybdenum. Molybdenum was not detectable in invertebrates and the

concentrations found in fish and algae were lower than those that are

considered harmful for birds (Tables 5-1 and 5-2). The highest mean

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

concentration for a fish species was less than 0.1 of the assessment value.

Thus, molybdenum is not considered a COC.

Nickel. Nickel concentrations in invertebrates, algae, and fish were elevated in

comparison to the normal/adequate dietary range for poultry (Puls, 1988),

although they were below the high range and less than the MTL and

appropriate assessment values (Tables 5-1 and 5-2). Data available for

seabirds imply that the birds do not metabolically regulate tissue

concentrations of nickel (Furness and Rainbow, 1990), so it is considered a

COC.

Selenium. Selenium concentrations (whether maxima or means) in biological

samples were well below the dietary levels associated with adverse effects in

wild birds (Tables 5-1 and 5-2). Research on selenium effects in aquatic birds

conducted by USFWS during the past 10 years (Ohlendorf 1989, 1995)

suggests that the concentrations in invertebrates and fish at the NWR are

unlikely to affect birds at the NWR, although maximum concentrations

sometimes exceed the MTL for poultry (Table 5-1). Consequently, selenium is

not a COC for clapper rails and least terns at the NWR.

Silver. Silver was rarely detectable in biota samples and concentrations were

low in comparison to available assessment values (Table 5-1). Thus, it is not

considered a COC at the NWR.

5-16

SCO100217D9.WP5\95\CF

Revision: 0

Strontium. No assessment values are available from the USFWS Contaminant

Hazard Reviews (Eisler 1985 through 1993) or from Furness and Rainbow

(1990). Strontium occurred at maximum concentrations in biota well below the

levels that are harmful to poultry, and the ratios of means for invertebrates

(0.45) or fish (0.09) to assessments also were low (Tables 5-1 and 5-2).

Therefore, it is not considered a concern for clapper rails and least terns at the

NWR.

Vanadium. Vanadium sometimes occurred in biota at maximum

concentrations considered high or somewhat above the MTL for poultry

(Tables 5-1 and 5-2). However, assessment values for vanadium in the diets of

wild birds are not available and highest mean concentrations in invertebrates at

any sample location or fish across all sample locations were well below the

assessment value (Table 5-2). It is an essential element for marine organisms,

and they have evolved mechanisms to sequester, transport, and use the

vanadium to which they are exposed (Furness and Rainbow 1990). Although

the assimilative capacity of the system can be overloaded by localized

excessive levels, effects are not easily demonstrated. When vanadium was fed

to mallards at 100 mg/kg for 12 weeks, there was no apparent effect on their

health (White and Dieter 1978). Lipid metabolism of laying hens receiving the

treated diet was altered, but their body weights were comparable to controls

and they appeared healthy throughout the study. Hence, vanadium is not

considered a concern for clapper rails and least terns at the NWR.

SCO100217D9.WP5\95\CF

Zinc. Zinc occurred at highest concentrations (up to 542 mg/kg) in saltmarsh snails (Table 4-8). This concentration exceeds the normal/adequate range given by Puls (1988) and that listed by Eisler (1993) as "excessive" for poultry. All other samples had zinc concentrations in the normal/adequate range for poultry. In addition, mean concentrations approximating exposure did not exceed assessment levels (Table 5-2). Dietary concentrations for zincpoisoned mallards were 2,500 to 3,000 mg/kg (Eisler 1993), which is similar to toxic levels for poultry (Table 5-1). It is unknown whether the zinc concentrations found in saltmarsh snails are typical for that species elsewhere, but the concentrations in saltmarsh snails were several times higher than those in horned snails. This suggests that saltmarsh snails may naturally have higher tissue concentrations than the other sampled species. As with copper, zinc is an essential element for marine organisms and levels are likely to be closely regulated (Furness and Rainbow 1990). Although the concentrations found in food-chain biota are probably not toxic to birds at the NWR, zinc is considered as a COC because of its possible relationship to toxicity as indicated by the Microtox® bioassay.

Organics

Pesticides, PCBs, and PAHs. Organochlorine contaminants such as DDT and its metabolites (primarily DDE and DDD), PCBs, and chlordane have a tendency to bioaccumulate to high levels in birds that consume contaminated organisms (Stickel 1973; Ohlendorf et al. 1978; Eisler 1986b, 1990b). In contrast, PAHs generally show little tendency to bioaccumulate in food chains,

SCO100217D9.WP5\95\CF

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

despite their high lipid solubility, probably because most PAHs are rapidly

metabolized (Eisler 1987b). Based on the frequency of occurrence, maximum

and mean concentrations, potential to bioaccumulate, and known effects of

these various organics in birds, DDE is the chemical considered most likely to

cause potential effects in birds at the NWR.

Dietary concentrations used for assessment of some organic contaminants in

bird diets also are provided by Eisler (1986b, 1990b) and by other reviews

(Stickel 1973; Ohlendorf et al. 1978), although effect levels in clapper rails and

least terns are not known. In general, dietary concentrations of 3 mg/kg (fresh

weight) of either DDE or PCBs are considered to cause adverse effects in

birds. Dietary concentrations up to 0.3 mg/kg (fresh weight) total chlordane

are considered acceptable. Acute and chronic toxicity effects on birds

exposed to PAHs in their diet are very limited (Eisler 1987b). When mallards

were fed diets containing 4,000 mg PAHs/kg (mostly as naphthalenes,

naphthenes, and phenanthrene) for a period of 7 months, no mortality or

visible signs of toxicity were observed, but the birds did show physiological

responses (including 25 percent larger livers than controls).

The USFWS has periodically determined concentrations of selected inorganic

and organochlorine chemicals in freshwater fish collected from a nationwide

network of randomly located stations as part of the National Contaminant

Biomonitoring Program (NCBP) (Schmitt and Brumbaugh 1990; Schmitt et al.

1990). Chemical concentrations in the NCBP are typically reported on a

wet-weight basis. Average moisture content of the fish is about 75 percent;

thus, wet-weight concentrations can be converted to approximate dry-weight concentrations through multiplying by a factor of 4. Results of the most recently published NCBP survey are summarized in Table 5-3 for comparison with results from the NWR.

Comparing the concentrations of various chemicals in fish from the NWR with those found in the NCBP (Table 5-3) suggests that cadmium, mercury, selenium, DDD, DDT, PCBs, cis-nonachlor, and trans-nonachlor concentrations are similar. Such a comparison also shows that copper, lead, and zinc maximum concentrations in at least some fish species from the NWR exceed the NCBP 85th percentile values and geometric means exceed the NCBP geometric means. Therefore, these three metals are potentially present at levels above background and retained as COCs although the higher levels in estuarine fish from the NWR may be related to species differences. Schmitt et al. (1990) do not provide 85th percentile values for fish in the NCBP, but the geometric mean DDE concentrations in deepbody anchovy, northern anchovy, and queenfish are equal to the NCBP geometric mean or higher than that value. Although arsenic concentrations in fish from the NWR are higher than the NCBP values, this is not unexpected. Marine organisms normally contain arsenic concentrations of several to more than 100 mg/kg dry weight, but these levels present little hazard to the organism or its consumers (Eisler 1988a).

NAS has established recommended maximum concentrations of certain toxic substances in freshwater fish and marine fish tissue to protect the fish

Version: Final Revision: 0

Table 5-3
Geometric Mean Concentrations (mg/kg wet weight), 85th Percentile (for Inorganics) and Maximum Concentrations Found Nationwide in Freshwater Fish by the National Contaminant Biomonitoring Program, 1984

by the reactional Contaminant Dismonitoring Fregram, 1007						
Chemical	Geometric Mean	85th Percentile	Maximum Concentration			
Inorganic ^a						
Arsenic	0.14	0.27	1.50			
Cadmium	0.03	0.05	0.22			
Copper	0.65	1.0	23.1			
Lead	0.11	0.22	4.88			
Mercury	0.10	0.17	0.37			
Selenium	0.42	0.73	2.30			
Zinc	21.7	34.2	118.4			
Organics ^b						
4,4'-DDE	0.19		4.74			
4,4'-DDD	0.06	 ·	2.55			
4,4'-DDT	0.03		1.79			
PCB 1254	0.21		4.0			
PCB 1260	0.15		2.3			
cis-Nonachlor	0.02	***	0.45			
trans-Nonachlor	0.03		1.0			

^aSchmitt and Brumbaugh, 1990; average moisture content of fish was about 75% (thus, wet-weight concentrations can be converted to approximate dry-weight concentrations by multiplying by 4).

bSchmitt et al., 1990; only those chemicals detected in fish at Seal Beach NWR are included.

CLE-C01-01F237-S2-0001

Version: Final

containing those chemicals, as well as to protect animals that consume the

contaminated fish (NAS 1973). These recommended guidelines are presented

in Table 5-4 and should reflect levels protective for least terns as well as

clapper rails feeding on invertebrates. Consequently, the NAS values were

selected as final assessment values for evaluation of exposure (Table 5-2).

Additional criteria or standards have been published by the Food and

Agriculture Organization of the United Nations (Nauen 1983) and by the U.S.

Food and Drug Administration (USFDA 1994). However, those values are for

contaminant concentrations in edible portions of fish and are not directly

applicable to the (whole-body) results or purposes of this study.

Maximum detected concentrations of mercury and total BHC in fish from the

NWR were less than the NAS guideline levels for whole freshwater or marine

ish. Maximum total chlordane (cis nonachlor plus trans nonachlor)

concentration was lower than the guideline for freshwater fish but higher than

that for marine fish. Maximum concentrations of total DDT and total PCBs

exceeded the recommended guidelines in Table 5-4, although PCBs were only

slightly higher than the guideline.

Contaminant concentrations in fish and in mussels from California waters are

measured periodically through the Toxic Substances Monitoring Program

(TSMP) or the California State Mussel Watch (CSMW) (Phillips 1988;

Rasmussen 1992). Those programs use "elevated data levels" (EDLs) as

internal comparative measures that rank a given concentration of a particular

5-23

SCO100217D9.WP5\95\CF

Revision: 0

substance with previous data from the TSMP or CSMW. The EDLs are

calculated by ranking all of the results for a given chemical from the highest

concentration to the lowest concentration measured (including those not

detected). From this, a cumulative distribution is constructed and percentile

rankings are calculated. The 85th percentile (EDL 85) is used as an indication

that a chemical is elevated from the median. EDL 85 values for selected

organisms and chemicals of interest in the NWR study are shown in Table 5-5.

Although species sampled at the NWR are different from those sampled in the

TSMP and CSMW and some of the TSMP and CSMW stations are intentionally

placed in contaminated areas. The EDL 85 values are useful for evaluating

results from the NWR. Data for marine fish sampled in the TSMP are

inadequate for calculation of EDL values in whole fish, but values are available

for freshwater fish.

The State of California (1993) also has developed Maximum Tissue Residue

Levels (MTRLs) for evaluating contaminant concentration in organisms as an

element of the Bay Protection and Toxic Cleanup Program (BPTCP). The

MTRLs are calculated by multiplying the human health water quality objective in

the appropriate statewide draft plan by the chemical's bioconcentration factor.

Exceedance of MTRLs by toxic chemicals in tissues of resident organisms is

given in the BPTCP as one of the conditions that may indicate the site is a

"potential hot spot" (as defined by State of California, 1993). Table 5-5 lists the

available MTRLs for contaminants found in the biological samples from the

NWR. However, because of various uncertainties in the calculation of MRTLs

5-24

SCO100217D9.WP5\95\CF

Revision: 0

Table 5-4
NAS Guideline Levels for Toxic Chemicals in Whole Fish (mg/kg wet weight)

	1	NAS ^a Recommended Guidelines		
Chemical	Freshwater Fish	Marine Fish		
Mercury	0.5	0.5		
DDT (total)	1.0	0.05		
PCB (total)	0.5	0.5		
Chlordane (total)	0.1 ^b	0.05		
Benzene hexachloride (total)	0.1 ^b	0.05		

^aNAS, 1973.

blndividually or in combination, including various isomers and component chemicals.

Version: Final Revision: 0

Table 5-5
Elevated Data Levels (EDL 85s) for Inorganic and Organic Chemicals in the Toxic Substances Monitoring Program (TSMP) and California State Mussel Watch (CSMW)

	TSMPa	CSMWb	BPTCP ^C
Chemical	Freshwater Fish	California Mussels	Estuarine Organisms
Inorganics			
Aluminum	NA	662.8	NA
Arsenic	0.48	23.82	NA
Cadmium	0.10	10.83	NA
Chromium	0.20	3.93	NA
Copper	3.28	21.85	NA
Lead	0.28	11.01	NA
Manganese	NA	34.23	NA
Mercury	0.07	0.44	1.0
Nickel	0.20	5.30	220
Selenium	1.50	4.48	NA
Silver	0.03	0.70	NA
Zinc	35.0	336.3	NA
Organics			
4,4'-DDE	2,295.0	NA	32
4,4'-DDD	386.0	NA	NA
4,4'-DDT	193.0	85.5	NA
Total DDT	3,704.0	1,483.0	32
PCB 1254	175.0	1,420.0	NA
PCB 1260	110.0	LT	NA
Total PCB	281.5	1,420.0	2.2
cis-Nonachlor	20.6	NA	NA
trans-Nonachlor	55.7	NA	NA
Total Chlordane	171.7	192.4	1.2
delta-Benzene hexachloride	<5.0	LT	NA
Hexachlorobenzene	7.3	0.17	6

^aRasmussen, 1992; values for inorganics are mg/kg wet weight in whole fish,

those for organics μ g/kg wet weight. bPhillips, 1988; values are mg/kg dry weight for inorganics, μ g/kg dry weight for organics.

^CState of California, 1993; values are mg/kg for inorganics, μ g/kg for organic (presumably both are on wetweight basis although not specified and could not be confirmed)

ID = Insufficient data to calculate an EDL

LT = EDL is less than the detection limit -

NA = Not available

Revision: 0

(such as the use of human health water quality objectives), they are not

considered directly applicable for bird exposures.

Comparing concentrations of chemicals detected in fish from the NWR with

those from the TSMP indicates that concentrations of cadmium, mercury,

selenium, DDE, DDD, DDT, cis-nonachlor, trans-nonachlor, BHC, and

hexachlorobenzene concentrations at the NWR are not unusual (as are those

for arsenic as noted above in comparison to freshwater fish in the NCBP).

Concentrations of chromium, copper, lead, nickel, zinc, and PCBs in fish at the

NWR appear elevated in comparing the maximum detected concentrations

there with EDL 85 values from the TSMP. Values presented in Table 5-5 from

the CSMW will be discussed later in Other Studies in comparison to results of

CSMW sampling in Anaheim Bay.

Maximum detected concentrations of mercury and nickel (the only two

inorganics for which MTRLs are available) in all biological samples from the

NWR were below the MTRLs (Tables 4-8, 4-11, and 5-5). However, maximum

concentrations of DDE in snails and crabs were near or slightly above the

MTRL, and geometric means (Table 4-12), as well as maximum concentrations

of DDE in each of the fish species (Table 4-11) exceeded the MTRL. Maximum

concentrations of PCBs in saltmarsh snails, crabs, and clams (Table 4-8)

exceeded the MTRL for total PCBs (Table 5-2). Maximum and geometric mean

PCB concentrations in each fish species (Tables 4-11 and 4-12) also exceeded

5-29

SCO100217D9.WP5\95\CF

the MTRL (Table 5-5). Geometric means for other chemicals were below the MTRLs.

In summary, the following chemicals appear to be elevated in invertebrates or fish from the NWR in comparison to various toxicological effect values or reference values:

- o Cadmium
- o Chromium
- o Copper
- o Lead
- o Nickel
- o Zinc
- o DDE
- o PCBs

These chemicals are, therefore, identified as being of potential concern for possible effects in clapper rails and least terms or their diets at the NWR.

Spatial Patterns

Overall patterns in the occurrence of various COCs (six inorganics, two organics) were examined by comparing the locations where they occurred at highest concentrations in the most widely collected species. (Refer to Figure 3-2 for sample locations in the NWR.) Those species included horned

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

snails, saltmarsh snails, striped shore crabs, and topsmelt. Although topsmelt

were not collected at each of the 23 sample locations, they were collected at

least once at 9 sample locations and at least three times in each of the POLB

mitigation ponds as shown on Figure 5-1. Topsmelt also are more mobile than

are the invertebrates sampled in this study, so they may not be as reliable

indicators of locations-specific exposure. Nevertheless, the evaluation did

indicate that topsmelt often had highest concentrations of contaminants at the

same general locations where some of the invertebrates had highest levels.

The three locations for each species where concentrations of selected

contaminants were highest were listed in Table 4-10. The areas that most

often had among the highest concentrations of inorganics were sample

locations B-1 and C-1, E-4, G-3, and the combined area of sample location F-5

and Pond 3 (Table 4-10). Sample location G-2 had highest concentrations of

lead in both horned and saltmarsh snails. Inorganics in horned snails from

sample location D-2 were often among the five highest concentrations for that

species. The crabs from sample location H-1 often had among the five highest

chemical concentrations for that species, but were among the three highest

only for copper (Table 4-10). However, horned and saltmarsh snails from

sample location H-1 were seldom found to have the highest concentrations for

inorganic chemicals.

SCO100217D9.WP5\95\CF

Within species, the following sample locations were areas where inorganic

concentrations were generally higher:

- o Horned snails-D-2, D-3 and B-1
- o Saltmarsh snails-G-3 and E-4
- o Shore crabs—B-1, F-5, and E-4
- o Topsmelt—Pond 3

Although the highest and second-highest concentrations of inorganics within a particular species sometimes occurred at adjacent or nearby sample locations (for example, zinc in horned snails from sample locations D-2 and D-3, or lead in that species from sample locations G-2 and H-1), this was unusual. Most often, the spatial patterns within species were unclear and it was more useful to consider the patterns for all invertebrate species combined with topsmelt. In doing so, concentrations for each metal appear to be generally higher at the following areas (invertebrates and fish often were not collected at the same sample locations, ponds are combined with adjacent sample locations):

- o Cadmium—A-1 and Pond 2, B-1, C-1, F-5 and Pond 3
- o Chromium—B-1, E-1, E-4, and Pond 3
- o Copper-E-4, F-5 and Pond 3, G-3
- o Lead-E-4, F-1, G-2, Pond 3
- o Nickel-No particular pattern
- o Zinc—F-5 and Pond 3 (otherwise, widely scattered sample locations)

Comparing the invertebrate patterns with those observed in the NWR sediments, the strongest similarities occur for the general area of sample location B-1 where metals such as cadmium, chromium, copper, and lead were

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

Revision: 0

generally elevated. However, the only statistically significant relationship by

sample location between sediment and biota metals was for chromium in

saltmarsh snails (P<0.05). Although the chromium relationship is statistically

significant, only a small portion of the variation in saltmarsh snail chromium can

be explained by variation in sediment chromium $(r^2=0.2)$.

Among the two organic COCs, spatial patterns were more apparent for DDE

than for PCBs. Higher concentrations of DDE occurred in POLB Ponds 1 and

2 fish and in sample locations A-1 and B-1 invertebrates (Table 4-10). When

DDE concentrations in sediments were normalized for total organic carbon

concentration (a standardization for bioavailability; see Appendix C), they were

highest at sample locations B-1 and H-1, and significantly correlated to

variation in concentrations in crabs (P<0.01, r^2 =0.9).

PCBs were not detected as frequently as DDE and there were fewer similarities

among species in which the highest concentrations occurred. Although both

horned and saltmarsh snails from sample location E-3 had highest PCB

concentrations for those species, the second highest levels for horned and

saltmarsh snails and the highest concentrations for crabs and topsmelt were

spatially disjunct (at F-1 and B-2, and D-1 and Pond 4, respectively). Sample

location F-1 was the only other location where two species had concentrations

among the five highest for two species (horned snail and saltmarsh snail).

PCBs in sediments were detected only at sample location C-3, which was not

among the highest sample locations for snails, crabs, or topsmelt.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Bird Eggs

Bird eggs can be good indicators of previous or current exposure of the female that laid them to some inorganics (such as mercury and selenium) and to organochlorines (Ohlendorf et al. 1978; Ohlendorf 1993). However, for some chemicals of potential concern at the NWR (such as cadmium and lead), there is little relationship between the female's dietary exposure and the concentrations found in the eggs. Furthermore, some chemicals (including mercury and organochlorines) that are passed on to eggs may represent body burdens accumulated by the female over long periods, including exposure in previous years and in overwintering locations. Taking these various factors into consideration leads to the following conclusions:

- o Inorganics for which interpretive guidelines are available generally were present at background levels, except mercury exceeded 1 mg/kg in one egg collected during 1993.
- o DDE occurred in some eggs (especially during 1993) at levels associated with impaired reproduction in sensitive species (although effect levels in least terms are not well known).
- o Concentrations of PCBs in all eggs were less than the concentration (<16 mg/kg fresh weight) recommended by Eisler (1986b) as a proposed criterion for protection of birds.

Revision: 0

Mercury concentrations in the least tern eggs were similar to or lower than those in Forster's tern (*Sterna forsteri*) and Caspian tern (*Sterna caspia*) eggs from San Francisco Bay (Ohlendorf et al. 1988). Lowered hatching success and a reduced fledgling rate in common terns (*Sterna hirundo*) were associated with mercury concentrations between 1.0 and 3.6 mg/kg (wet weight; Connors et al. 1975), whereas herring gulls (*Larus argentatus*) were apparently not affected when eggs contained 2 to 16 mg/kg mercury (wet weight; Vermeer et al. 1973). Mallard (*Anas platyrhynchos*) reproductive success was reduced

when eggs contained about 0.85 mg/kg mercury (fresh weight; Heinz 1979).

Some species of birds, such as the brown pelican (*Pelecanus occidentalis*) are especially sensitive to adverse effects of DDE on reproductive success (Elliott and Noble 1993). Terns appear to be intermediate among avian species in their sensitivity to DDE. More than 25 percent of eggs laid by Caspian terns breeding in San Diego Bay in 1981 failed to hatch, or died during piping (Ohlendorf et al. 1985). Although DDE residues in eggs averaged 9.3 mg/kg (wet weight) and were inversely correlated with eggshell thickness, residues were not significantly related to hatching success. In the Great Lakes, common tern populations declined during the 1970s, and there is some evidence that organochlorine contaminants were one factor that reduced reproductive success (Weseloh et al. 1989). By 1981, DDE concentrations in eggs had declined substantially and seemed no longer to be an important factor in the population dynamics of common terns on the Great Lakes. Geometric mean DDE concentrations in some colonies were 10 to 13 mg/kg

Final NWR Study Report CTO 0237

CLE-C01-01F237-\$2-0001 Version: Final

Revision: 0

(wet weight) during 1972, and they had declined to 2.5 mg/kg or less in those

colonies by 1981.

The USFWS also analyzed samples of addled least tern eggs salvaged from

colonies in San Francisco Bay and San Diego Bay during the mid-1980s (D.L.

Roster, USFWS, personal communication 1994). The samples from the 1980s

included 43 eggs analyzed for mercury and selenium (12 samples from San

Francisco Bay, 17 samples from San Diego Bay), and 42 eggs analyzed for

organochlorines (13 samples from San Francisco Bay, 18 samples from San

Diego Bay; as at the NWR, eggs were sometimes composited because they

were small and some samples were analyzed for both inorganics and organics,

but not all). Although results of those analyses have not been compared

statistically to the results for NWR eggs, some general comparisons can be

made.

None of the least tern eggs from San Francisco Bay had less than 1 mg/kg

mercury, and concentrations ranged up to 3.2 mg/kg (D.L. Roster, USFWS,

personal communication 1994). In contrast, more of the eggs (almost half)

from San Diego Bay had less than 1 mg/kg mercury, and mercury

concentrations ranged up to 2.3 mg/kg. DDE concentrations in eggs from San

Francisco Bay were 0.54 to 1.83 mg/kg (fresh wet weight); those from San

Diego Bay also were less than 2.0 mg/kg. Without more detailed verification of

sample handling and the basis for reporting contaminant concentrations in the

various samples, the results for least tern eggs indicate generally that mercury

and DDE concentrations at the NWR are not unusual. Mercury concentrations

SCO100217D9.WP5\95\CF

Revision: 0

seem comparable to those found in eggs at San Diego Bay (and lower than

those found in San Francisco Bay), and DDE concentrations are more similar

to those found in San Francisco Bay (although apparently higher than those

found at San Diego Bay), as shown in Table 5-6.

During 1991, the USFWS collected eight clapper rail eggs at the NWR and

analyzed five of them for inorganic and three for organic contaminants (S.L.

Goodbred, USFWS, personal communication 1994). Cadmium and lead were

below the detection limit (0.5mg/kg dry weight) and other metals occurred at

relatively low concentrations. Although background levels for metals in clapper

rail eggs are not well known, geometric means were 1.16 mg chromium/kg, 2.5

mg copper/kg, 0.07 mg mercury/kg, and 49.6 mg zinc/kg. The low range of

values for mercury (<0.1 to 0.12 mg/kg) indicates that concentrations in the

NWR food chain are low. By comparison, mercury concentrations in 51

California clapper rail eggs salvaged from San Francisco Bay in 1986 and 1992

averaged about 0.6 mg/kg fresh wet weight (or about 1.8 mg/kg dry weight

(S.E. Schwarzbach, USFWS, personal communication 1994). Similarly, the

concentrations of DDE in rail eggs from the NWR were below 1.0 mg/kg (0.31,

0.34, and 0.89 mg/kg wet weight, not corrected for moisture loss, so fresh

wet-weight concentrations would be still lower).

Other organochlorines (such as trans-nonachlor and PCBs), as well as PAHs

(such as pyrene and phenanthrene), occurred only at concentrations lower

than 0.5 mg/kg and 0.1 mg/kg, respectively.

SCO100217D9.WP5\95\CF

Revision: 0

Contaminants such as the mercury and DDE found in least tern eggs reflect

exposure outside of the NWR as well as within the NWR. However, DDE in fish

at the NWR does represent a concern for least terns feeding upon them

because reproductive success could be adversely affected.

It is important to note that tern egg samples collected from the NWR represent

a biased sample of the population because all these eggs were collected when

they had failed to hatch.

Other Studies

Several IRP studies that have been or currently are being conducted at or near

the NWR provide useful information for interpreting the NWR study results.

Chemicals of Potential Concern (COPCs) from the soil, surface water, and

groundwater sampling locations of Operable Units (OUs) 4, 5, 6, and 7 that

border on the NWR sample locations stations are listed in Attachment 1 of

Appendix D. Those OU 4 sites of concern, because of their proximity to the

NWR, include Site 5, along the Kitts Highway, and Sites 6, 23, 35, and 38,

because of their proximity to POLB Ponds 1, 2, 3, and 4. Slightly elevated

levels of copper, lead, mercury, nickel, and zinc were detected in soils from

Site 5, which is near NWR sampling locations A-1, B-1 and C-1, as shown in

Figure 5-2. Copper and lead were elevated in NWR sediment samples at

sample locations A-1 and B-1. Copper was elevated in invertebrates collected

in the NWR study at sample location C-1 and lead was elevated in

invertebrates collected at sample locations B-1 and C-1. The proximity of

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

Table 5-6 Comparison of Mercury and DDE Concentrations in Least Tern Eggs Salvaged From Nesting Colonies at Seal Beach NWR, San Diego Bay, and San Francisco Bay

		Mercury		ם	DDE		
Location	Years	N		N			
Seal Beach NWR	1991 & 1993	9/9 ^a	0.82 ^b . (1.26)	11/11	3.65 (6.98)		
San Diego Bay	mid-1980s	?/17 ^f	<1-2.3 ^d	?/18 ^f	<2 ^e		
San Francisco Bay	mid-1980s	12/12	1-3.2 ^d	13/13	0.54-1.8 ^e		

- a Number of samples with measurable concentrations/number of samples analyzed.
- b Reported as mg/kg dry weight (value in parentheses is maximum detected).
- c Reported as mg/kg wet weight (not corrected to fresh wet weight (value in parentheses is maximum detected.
- d Range, as mg/kg dry weight.
- e mg/kg fresh wet weight (corrected for moisture loss during incubation).
- f Number of samples with measurable concentrations/number of samples analyzed not available.

CLE-C01-01F237-\$2-0001 Version: Final Revision: 0

blank page

Revision: 0

Site 5 to the west arm of the NWR, and the potential for sediment transport in

the west arm may result in distribution and deposition of these chemicals in the

NWR. Analytical results from Sites 6, 23, 35, and 38 did not reveal COCs with

regard to exposure in NWR locations (SWDIV 1993).

All of the OU 5 sites are located in proximity to the NWR and could potentially

contribute contaminants to the tidal saltmarsh or POLB ponds. Sites 8, 42, and

43 border the west edge of the tidal saltmarsh near NWR sample locations B-1

and C-1 and drain directly to the NWR. Sites 44 and 45 are located near POLB

Pond 2. Site 16 is located adjacent to POLB Pond 3. Site 12 is NASA Island,

where the least tern colony is located near NWR sample locations D-3 and E-4

(SWDIV 1994a). Site 12 is unique in providing potential direct contact between

the least terns and onsite contaminants. The contaminants of concern from

the SI study for Sites 8, 42, and 43 (SWDIV 1994b) include cadmium, lead, and

1,2-DCAA in groundwater. Sites 44 and 45 had elevated levels of nickel and

several organic compounds (benzene, naphthalene, phenanthrene, 2-methyl-

naphthalene) in groundwater. NASA Island (Site 12) contained elevated levels

of antimony and thallium in groundwater. Groundwater from Site 16, adjacent

to POLB Pond 3, also contained elevated levels of antimony.

A number of sites were evaluated for OUs 6 and 7, but only Sites 4 (the oiled

perimeter road) and 24 (quench water disposal area) are in proximity to the

NWR and of concern for elevated contaminants. Both sites were included in

the Site Investigation (SI) report (SWDIV 1990). The perimeter road was found

to be free of detectable levels of PCBs and hazardous levels of heavy metals,

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

but recent samples indicated elevated lead concentrations from the road area

near POLB Pond 4 and F-5 (B. Wong, unpub. data 1994). No elevated levels

of contaminants were found in the soil, surface water, or horned snail samples

from Site 24.

Previous investigations at the NWS have revealed various soil and groundwater

contaminants, as well as bioaccumulation in invertebrates of the tidal

saltmarsh. Site 1, near the POLB Pond 2, had elevated levels of metals in the

soil, with chromium of greatest concern for groundwater contamination (SWDIV

1990). Site 7 contains landfill waste and is located near POLB Ponds 3 and 4

and NWR sample location F-5. Elevated contaminants in soil and groundwater

include chromium, copper, and possibly mercury and zinc. Site 22, Oil Island,

is entirely surrounded by the tidal saltmarsh and is in proximity to NWR sample

locations C-2, C-3, D-2, E-2, and G-3. Chromium and mercury in horned snails

collected at sites around Oil Island were elevated in comparison to State

Mussel Watch data for other species of molluscs (SWDIV 1990).

The POLB pond monitoring program provides a regular census of the diversity

and abundance of fish and invertebrates within the four POLB ponds. Results

from those studies generally confirm the NWR Study fish sampling results. The

list of species collected (Table 3-1) includes fewer species than the POLB

collections, primarily as a result more diverse sampling techniques applied to

POLB ponds (designed to capture all size classes of fish). Our species and

relative abundance estimates generally concur with the POLB monitoring data

(MEC 1992).

SCO100217D9.WP5\95\CF

Revision: 0

The NOAA has conducted an extensive study of temporal and spatial

contaminant trends in fish and macroinvertebrates from the Southern California

Bight from Point Conception to San Diego (Mearns et al. 1991). Their results

are generally not applicable to the NWR Study. The focus of the NOAA

contaminants characterization was on edible tissue and livers rather than whole

body tissues analyzed in the NWR Study. In addition, species included in the

study from the NWR area were different than those collected in the NWR Study.

Furthermore, fish in the Bight show elevated levels of DDT and its metabolites

as a result of past waste disposal practices in the Los Angeles area.

The CSMW monitoring results for transplanted California mussels provide a

useful comparison to the NWR Study as a characterization of the spatial

pattern of contamination and for an assessment of the elevation of chemical

concentrations over background. In addition, CSMW results provide partial

data toward identifying temporal contaminant trends. However, the CSMW and

NWR study species are different and, therefore, CSMW tissue chemistry results

are not directly comparable to the NWR study data.

The CSMW does not show any clear temporal trends in contamination.

Different stations and analytes show opposite trends for both inorganic and

organic contaminants, as indicated in Table 5-7. The only exception to this is

that the highest values of several of the inorganic and organic contaminants

occurred in the earlier samples (1985 and 1986). Some spatial patterns are

apparent. The Bolsa Chica Channel station (CSMW 713), just outside of the

NWR, shows higher concentrations of cadmium, lead, and possibly mercury in

5-47

SCO100217D9.WP5\95\CF

recent years (Table 5-7). The lack of sampling of some stations in recent years precludes an effective evaluation of Anaheim Bay spatial patterns.

Water and sediments of Huntington Harbour and Anaheim Bay, as well as in upstream drainage areas, have been examined for contaminant chemistry and toxicity in two Regional Water Quality Control Board (RWQCB) Santa Ana Region studies. The sampling locations in one study (Olson and Martinez 1993; Bailey et al. 1993) do not include NWR sites, but the results are generally indicative of upstream sediment and water quality and may indicate sources of NWR contamination. A separate, ongoing RWQCB study (Reid, 1994) will include information on sediment contamination and bioaccumulation in the NWR, although results are not yet available. Copper and lead were listed as inorganic COCs for surface water runoff into the Anaheim Bay/Huntington Harbour system in the Regional Board studies, with copper of greatest concern (Olson and Martinez 1993). Organochlorine compounds exceeding water quality criteria included heptachlor, dieldrin, and DDT. Sediment contaminant results showed generally lower concentrations in the marsh and Anaheim Bay entrance locations than upstream in Huntington Harbour and the Huntington Harbour-Warner Avenue bridge. Sediment contaminants that were elevated in upstream locations included cadmium, copper, mercury, zinc, DDE, DDT, cis-nonachlor, and trans-nonachlor (H. Smythe, RWQCB, unpub. data), indicating sources for these chemicals outside the NWR in the Huntington Harbour drainage. Anaheim Bay watershed samples exhibited toxicity at all sampling locations tested in the RWQCB study. Toxicity identification results

4,4'-DDD

4.4'-DDE 4,4'-DDT

Total DDT

PCB 1254

Total PCBs

cis-Nonachlor

rans-Nonachlor

Version: Final Revision:

5.6

53.0

1.7

68.6

1.10

1.80

44.0

52.0

	C	California St for the	ate Mussei Anaheim Ba									
Year		1985			1986		1990-91			1991-92		
CSMW Station		710.2	713	708	710.2	713	708	708.5	713	708	708.5	713
Closest NWR Station	CSMW EDL85 ^a	H1	Bolsa Chica Channel	G2	H1	Bolsa Chica Channel	G2	G2	Bolsa Chica Channel	G2	G2	Bolsa Chica Channei
INORGANICS (mg/kg, dry weight)												
Cadmium	10.83	3.88	4.74	4.92	5.70	4.95	5.70	9.30	16.00	5.40	5.70	11.00
Chromium	3.93	1.71	2.56	1.62	2.11	2.76	15.00	3.20	2.80	1.40	1.50	1.80
Copper	21.85	8.7	12.7	7.4	10.7	11.9	13.0	13.0	11.0	11.0	12.0	14.0
Lead	11.01	14.11	15.86	5.27	12.07	12.35	4.80	1.70	6.60	3.50	3.00	6.50
Mercury	0.44	0.109	0.175	0.25 3	0.326	0.470	0.130	0.240	0,290	0.080	0.140	0.230
Zinc	336.3	206	256	198	279	255	280	330	230	200	210	280

13.7

81.9

3.9

ND

6.94

74.8

74.8

115.2

14.4 20.0

49.5 79.2

80.5 138.

3.30 ND

5.94 7.60

49.5 91.8

49.5 91.8

4.9

6.6

8.3

1.8

76.0

ND

2.90

36.8

36.8

52.8

19.0

52.5

6.6

ND

6.50

76.5

76.5

100.5

4.1

ND

31.6

0.90

1.50

10.8

10.8

20.4

3.6

33.2

0.9

48.5

1.60

2.10

17.4

17.4

3.1

11.6

0.9

1.10

1.10

9.3

9.3

18.0 103.5

5.9

1.6

1.50

2.80

51.0

51.0

79.0

2.8

65.0

1.6

80.8

1.60

1,90

40.0

40.0

Table 5-7

CSMW = California State Mussel Watch

ORGANICS (ug/kg, wet weight)

NWR = Seal Beach National Wildlife Refuge

ND = Not Detected

NA = Not Available

^aPhillips, 1988; Elevated data levels (85th percentile) for inorganic chemicals as mg/kg dry weight and for organics as μ g/kg dry weight.

NA

NA

85.5

1,483.0

NA

NA

1,420

1,420

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

ersion: Final Revision: 0

indicated that non-volatile organics were most likely responsible for the acute

toxicity observed in the watershed runoff samples (Bailey et al. 1993).

The evaluation of sediment erosion and deposition in the NWR tidal saltmarsh

system did not clearly reflect the observed patterns of contamination in the

tidal saltmarsh. Although some areas of relatively high biotic contamination,

such as the four POLB ponds, are areas of sediment deposition, the sites of

highest bioaccumulation are evenly spread among NWR sites characterized as

either deposition-prone, of high erosion potential, or as falling somewhere

between those extremes. This lack of complete coincidence of patterns may

be partially attributable to possible ongoing changes in sediment distribution

discussed earlier.

In contrast, the description of the physical characteristics of the Anaheim Bay

watershed, in conjunction with a knowledge of areas of deposition and erosion

within the NWR, may reveal offsite sources of contamination to the NWR. State

and local water, sediment, and contaminant bioaccumulation studies

(discussed above) have indicated generally higher levels of contamination in

the Bolsa Chica Channel and Huntington Harbour than near the mouth of

Anaheim Bay. The watershed study revealed that most of the surrounding

urban, upland areas, totalling more than 23,000 acres, drain through the Bolsa

Chica Channel to the lower end of Huntington Harbour near the eastern edge

of the Anaheim Bay saltmarsh. Various metals and organic chemicals have

been characterized as elevated in water and sediment in these upstream

drainages (Olson and Martinez 1993; Bailey et al. 1993; H. Smythe, RWQCB,

5-51

SCO100217D9.WP5\95\CF

Revision: 0

Final NWR Study Report CTO 0237

pers. comm. 1994). Based on the current understanding of hydrodynamics of

the Anaheim Bay system, including the NWR, it is likely that they may

contribute contaminants to the NWR from outside sources. As discussed

above, the patterns of bioaccumulation in the tidal saltmarsh identified in the

NWR Study do not support or refute this hypothesis. It is, therefore, not

possible to use these studies to partition the degree of contamination in the

NWR food-chain between NWS sources and those originating outside NWS

Seal Beach.

In summary, through the Navy's SI or RI/Feasibility Study (FS) or various state

contaminant assessment programs, several chemicals have been found at

elevated concentrations in proximity to or within the NWR in media that could

potentially result in exposure to biota. The COCs, as revealed by the chemical

analyses of other IRP studies that are consistent with and confirmed by the

NWR Study results, including media and potential exposure route are:

o Cadmium: groundwater, potential bioaccumulation from food chain

o Chromium: soil, groundwater, potential bioaccumulation from food

chain

o Copper: s

Copper: surface water, soil

o Lead: surface water, soil, potential bioaccumulation from food chain

Revision: 0

- o Mercury: soil
- o Nickel: groundwater, soil, potential bioaccumulation from food chain
- o Zinc: soil, possible toxicity in sediments
- o DDT: surface water, potential bioaccumulation from food chain

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

Revision: 0

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

6.1.1 Spatial Pattern of Contamination

The patterns of elevated levels of contaminants in sediment at the NWR

sometimes are reproduced in potential effect level concentrations found in

invertebrate and fish tissue in several areas of the Anaheim Bay saltmarsh

system. However, the spatial patterns of contamination for inorganic and

organic chemicals are somewhat different and reflect different sources. In

addition, some chemicals showed no consistent pattern of distribution in the

biota that would relate to source areas at the NWS Seal Beach.

o Inorganics of concern (primarily cadmium, chromium, copper, lead,

and zinc) were clustered as two main areas of soil, sediment,

contamination and bioaccumulation (in the area of NWR sample

location B-1 and on the opposite side of the NWR in the POLB Pond

3 and NWR sample locations E-4, F-5, G-2, and G-3 area). Nickel

showed no discernible pattern of distribution.

o The organic contaminant DDE showed elevated bioaccumulation

values in the area of POLB Ponds 1 and 2 and NWR sample

locations A-1 and B-1. PCBs were generally undetected and did not

SCO100217D9.WP5\95\CF

demonstrate a discernible spatial pattern. Other organic compounds were not detected in high enough frequency in the biota samples to provide information on spatial patterns.

o Phase I NWR Study results indicate no link to RI Sites.

6.1.2 Potential for Adverse Effects to NWR Endangered Species

Table 6-1 lists chemicals of concern due to their presence in the tissues of dietary species of birds at the NWR, particularly the clapper rails and least terns. It also provides an explanation for the overall level of concern related to each chemical and the rationale for assigning that level (See also Table 5-2 and text in Section 5.0).

Table 6-1 Chemicals of Concern NWS Seal Beach, NWR Study Report						
Chemical	Reason for Concern	Level of Concern	Rationale for Level of Concern			
Cadmium	Maximum detected concentration exceeds assessment levels for invertebrates. Potentially toxic levels.	Low	Assessment value is very conservative, and ratio of highest sample location mean for invertebrates to assessment value is less than 1.0.			
Chromium	Maximum detected concentration exceeds assessment levels for invertebrates and fish. Toxic levels.	Low	Ratio of maximum detected concentration to assessment value is less than 2.0, and ratios of invertebrate and fish means to assessment values are less than 1.0.			
Copper	Maximum detected concentration exceeds assessment levels for invertebrates. Potentially toxic levels.	Low	Maximum detected concentration was in ghost shrimp, which seem to have high copper levels naturally and are not primary foods of clapper rails. Ratios of mean concentrations for invertebrates at all sample locations are less than 1.0.			

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

	- 	le 6-1				
NWS Seal Beach, NWR Study Report						
Chemical	Reason for Concern	Level of Concern	Rationale for Level of Concern			
Lead	Maximum detected concentration exceeds assessment levels for invertebrates. Potentially toxic levels. Bioaccumulates.	Low- Moderate	Maximum detected concentration in invertebrates exceeds 10 times assessment value, but ratios of means for all sample locations in all fish species are less than 1.0.			
Nickel	Maximum detected elevated levels in invertebrates and fish. Potentially toxic levels.	Low	Although nickel concentrations were elevated in comparison to some assessment values, the maximum detected concentrations and means were less than the final assessment values.			
Zinc	Maximum detected concentrations exceeds assessment levels for invertebrates. Potentially toxic levels.	Low	Maximum detected concentration slightly exceeds final assessment value, but all invertebrate sample location means and fish species means are well below final assessment value.			
DDE	Maximum detected concentration equals or exceeds assessment levels for invertebrates and fish. Bioaccumulates.	Moderate- High	Maximum detected concentrations in invertebrates equals final assessment value, but ratios for all sample location means are less than 1.0. However, the ratios of maximum detected concentration for fish to final assessment value exceeds 30 and the highest fish species mean is 10 times the assessment value.			
PCBs	Maximum detected concentration exceeds assessment levels for invertebrates and fish. Bioaccumulates.	Low	Ratios of maximum invertebrate sample location mean and maximum fish species mean to final assessment value are less than 0.5.			

Inorganic and organic contaminants are not expected to cause lethal effects on clapper rails or least terns at the concentrations found in food chain components at the NWR. Similarly, the contaminants found in least tern eggs do not indicate likely lethal effects in nesting birds. The most likely sublethal effects that could be expected (if clapper rails and least terns are similar to other species that have been tested) include eggshell thinning, with reduced reproductive success in least terns as a result of DDE found in fish.

Other potential sublethal or indirect effects include the following, although probabilities are low:

- Cadmium Retarded growth, anemia, testicular damage.
- Chromium Altered growth patterns and reduced survival of young.
- Copper Feather loss, reduced food intake leading to weight loss or reduced weight gain and egg production.
- Lead Highly variable effects, but possibly loss of appetite, lethargy, weakness, lesions of various organs. However, ingestion of food containing biologically incorporated lead, although contributing to the lead burden of carnivorous birds, is unlikely in itself to cause clinical lead poisoning (Eisler 1988b).
- Nickel Reduced growth rate (but less effect when iron and zinc are elevated).
- o Zinc Possible effects on benthic invertebrates.
- o PCBs Possible effects in sensitive species of fish when whole-body concentrations are 0.4 mg/kg fresh weight or higher (concentrations in diet are not expected to affect birds directly.) Maximum PCB concentrations in deepbody anchovy were 0.74 mg/kg; in topsmelt

Revision: 0

they were 0.46 mg/kg. Geometric means were 0.18 and 0.066 mg/kg

fresh weight.

6.2 Recommendations

This NWR Study Report completes the Navy's responsibility to assess the impacts of

operations at NWS Seal Beach on the biota of the NWR.

The observed levels of invertebrate and fish contamination in the NWR do not warrant a

concern for immediate remediation. However, because of the potential for sediment

transport in the NWR resulting from construction of the POLB ponds, the following

actions are recommended:

o Food-chain organisms should be monitored for evidence of further

bioaccumulation of toxic chemicals that might increase the risk of exposure to

endangered species or other species in the NWR. Horned snails, saltmarsh

snails, and deepbody anchovy (if available) should be sampled from the two

general areas of sample locations A-1, B-1, and POLB Pond 1 and sample

locations F-5, G-3, and POLB Ponds 3 and 4 annually and analyzed for metals

and organochlorine compounds as an assessment of exposure of endangered

species to contaminated food organisms. These areas show consistently

elevated levels of contamination and food organisms may experience further

bioaccumulation as older, contaminated areas continue to erode and

contribute new chemicals to the ecosystem. It is also recommended that

POLB Ponds 2 and 4 be included in this sampling. While samples collected

6-5

SCO100217D9.WP5\95\CF

Revision: 0

from these ponds did not consistently show the highest levels of chemicals, expected patterns of sediment deposition could increase chemical concentrations in sediments and biota in these ponds. Heavy use of these ponds for foraging by the least tern, and future use for nesting by the clapper rail makes information on the status of chemicals in sediments and biota important. Bioaccumulation monitoring may be incorporated into the RI/FS decisions on site remediation and/or mitigation monitoring.

- o If not already part of the USFWS least tern monitoring effort, eggshells from the least tern colony at NASA Island and clapper rail eggshells should be collected and measured to assess the possibility of thinning as a result of DDE concentrations in fish or invertebrates.
 - Sediment samples should be collected in identified areas of contamination that are subject to erosion or deposition. These include POLB Ponds 1, 2, 3, and 4 where no sediment was collected in Phase I NWR Study, and sample locations A-1 and B-1, which seem to be a potential source of contaminants as a result of sediment transport. Investigation of potential contaminants in soil and water in the drainage that enters the NWR near sample location B-1 would be an important part of these additional studies. These data will be collected under the Navy's Storm Water Monitoring Program. The basis for this recommendation is the need to provide information on the potential changes in distribution of contaminants in the sediments and resulting effects on the biota in the NWR. Of particular concern are erosion and deposition involving the POLB ponds and nearby locations that are critical feeding areas for the least

0

tern and that will become nesting habitat for the clapper rail when they are

colonized by saltmarsh vegetation. These anticipated changes in potentially

contaminated sediment were found through our sediment transport modeling

to be primarily attributable to the changes in the hydraulics in the NWR

resulting from construction and operation of the POLB ponds.

Initially, annual monitoring is anticipated, but the timing and interval for monitoring could

be adjusted based on results of each successive monitoring events. As discussed

above, a new dynamic equilibrium for sediment transport would occur after installation

of the POLB ponds. The point in this transitional process at which the biota and

sediment sampling for the NWR Wildlife Refuge Study occurred is unknown. Samples

taken 2 years following the 1993 sampling event may or may not show comparable

contaminant levels and spatial distribution. If results from the first monitoring event

show differences from those from the 1992/93 sample analyses, additional monitoring

events (at an interval to be determined based on results) could be warranted. If,

however, there are no substantial differences, no additional monitoring may be advised.

The frequency and nature of this monitoring could be developed in conjunction with

pertinent agencies, but should include replicate samples from each location for each

sampling event.

To track the potential occurrence of sublethal effects of identified contaminants on the

clapper rail and the least tern, continued coordination with the USFWS is advised in

order to have access to analyses on addled eggs that they may collect, as well as any

population information they may have for these species.

Responsibility for the monitoring effort should be determined based on the conditions included in the MOV, which provided for the use of the NWR for POLB mitigation ponds.

The MOV was signed by POLB, USFFFWS, Navy, CDFGF, and NMFS.

7.0 REFERENCES

Anderson, J.A., Bay, S.M. and Thompson, B.E. 1988. Southern California Coastal Water Research Project. Characteristics of and Effects of Contaminated Sediments from Southern California.

Bailey, H.C., C. DiGiorgio, and D.E. Hinton. 1993. Anaheim Bay Watershed Toxicity Study. Final Report for Testing Events 10-17 November 1992, and 16-23 February 1993. Prepared for California Regional Quality Control Board, Santa Ana Region. Department of Medicine, School of Veterinary Medicine, University of California, Davis.

Bhogal, V.K., and S.L. Costa. "Modeling flood tidal deposits in tidal inlets." *Oceans 89*. 1989.

Bhogal, V.K. "A sediment dynamics model for flood and tidal delta evolution." *Marine Technology Society Journal*. 23(1):37-43. March 1989.

Cain, B.W., L. Sileo, J.C. Franson, and J. Moore. 1983. Effects of Dietary Cadmium on Mallard Ducklings. *Environmental Research* 32:286-297.

Costa, S.L., and J.D. Isaacs. The Modification of Sand Transport in Tidal Inlets. Proc. Symposium on Coastal Sediments and Structures, ASCE. Charleston, South Carolina. November 1977.

———. 1989. Molybdenum Hazards to Fish, Wildlife, and Invertebrates: A Synoptic
Review. U.S. Fish and Wildlife Service; Biological Report 85(1.19). Washington, DC.
1990a. Boron Hazards to Fish, Wildlife, and Invertebrates: A Synoptic
Review. U.S. Fish and Wildlife Service; Biological Report 85(1.20). Washington, DC.
1990b. Chlordane Hazards to Fish, Wildlife, and Invertebrates: A Synoptic
Review. U.S. Fish and Wildlife Service; Biological Report 85(1.21). Washington, DC.
1993. Zinc Hazards to Fish, Wildlife, and Invertebrates: A Synoptic
Review. U.S. Fish and Wildlife Service; Biological Report 10. Washington, DC.

Elliott, J.E., and D.G. Noble. 1993. Chlorinated Hydrocarbon Contaminants in Marine Birds of the Temperate North Pacific. *The Status, Ecology, and Conservation of Marine Birds of the North Pacific*. K. Vermeer, K. T. Briggs, K. H. Morgan, and D. Siegel-Causey, eds. Ottowa, Canada, Can. Wild. Serv. Spec. Publ. Pp. 241-253.

Furness, R. W., and P. S. Rainbow. 1990. Heavy Metals in the Marine Environment. CRC Press, Boca Raton, Florida.

Goodbred, S.L. 1994. Personal Communication with Steve Goodbred, USFWS, to Harry M. Ohlendorf, CH2M HILL. 22 March.

Graf, W.H., Hydraulics of Sediment Transport. McGraw-Hill, Inc. 1971.

Heinz, G.H. 1979. Methylmercury: Reproductive and Behavioral Effects on Three Generations of Mallard Ducks. *Journal of Wildlife Management* 43:394-401.

Hothem, R.L., and H.M. Ohlendorf. 1989. Contaminants in Foods of Aquatic Birds at Kesterson Reservoir, California, 1985. *Arch. Environ. Contam. Toxicol.* 18:773-786.

Jenkins, D.W. 1980. Biological Monitoring of Toxic Trace Metals - Volume 2. Toxic Trace Metals in Plants and Animals of the World. Part II. Environmental Monitoring Systems Laboratory. Office of Research and Development, U.S. Environmental Protection Agency, Las Vegas, Nevada, 89114.

Katz, A. and I.R. Kaplan. 1981. Heavy Metals Behavior in Coastal Sediments of Southern California: A Critical Review and Synthesis. Marine Chemistry 10:261-299.

Koutitas, C.G. 1988. *Mathematical Models in Coastal Engineering*. Pentech Press Limited. 1988

Lindsay, W.L., 1974. Chemical Equilibrium in Soils. John Wiley and Sons, N.Y.

Long, E.R., and L.G. Morgan. 1990. The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52.

Mearns, A.J., M. Matta, G. Shigenaka, D. MacDonald, M. Buchman, H. Harris, J. Golas, and G. Lauenstein. 1991. Contaminant Trends in the Southern California Bight:

Revision: 0

Inventory and Assessment. NOAA Technical Memorandum NOS ORCA 62, Seattle,

Washington. October.

Microbics Corp. 1991. Microtox® Manual, Solid-Phase Test Protocol. Carlsbad,

California.

MEC. 1992. Anaheim Bay Biomitigation Monitoring Project. Eighth Quarterly Report,

February-April 1992. Submitted to the Port of Long Beach, Port Planning Department,

Long Beach, California. Submitted by MEC Analytical System, Inc. Carlsbad, California.

April 15, 1992.

NAS. See National Academy of Sciences.

National Academy of Sciences-National Academy of Engineering. 1973. Water Quality

Criteria 1972 (Blue Book). EPA Ecological Research Series. EPA-R3-73-033. U.S.

Environmental Protection Agency, Washington, D.C.

National Academy of Sciences. 1980. Mineral Tolerance of Domestic Animals. Wash-

ington, DC.

National Ocean Service. 1993. Tide Tables 1993, High and Low Water Predictions,

West Coast of North and South America, Including the Hawaiian Islands. U.S.

Department of Commerce.

Revision: 0

Nauen, C.E. 1983. Compilation of Legal Limits for Hazardous Substances in Fish and

Fishery Products, Circular No. 764. FIRI/C764, Food and Agricultural Organization of

the United Nations.

Ohlendorf, H.M., R.W. Risebrough, and K. Vermeer. 1978. Exposure of Marine Birds to

Environmental Pollutants. U.S. Fish and Wildlife Service, Washington, D.C. Wildlife

Research Report 9.

Ohlendorf, H.M., T.W. Custer, R.W. Lowe, M. Rigney, and E. Cromartie. 1988. Organ-

ochlorines and Mercury in Eggs of Coastal Terns and Herons in California, USA.

Colonial Waterbirds 11:85-94.

Ohlendorf, H.M., R.L. Hothem, and D. Welsh. 1989. Nest Success, Cause-Specific Nest

Failure, and Hatchability of Aquatic Birds at Selenium-Contaminated Kesterson Reservoir

and a Reference Site. Condor 91: 787-796.

Ohlendorf, H.M. 1993. Marine Birds and Trace Elements in the Temperature North

Pacific. The Status, Ecology, and Conservation of Marine Birds of the North Pacific.

Ohlendorf, H.M., F.C. Schaffner, T.W. Custer, and C.J. Stafford. 1985. Reproduction

and Organochlorine Contaminants in Terns at San Diego Bay. Colonial Waterbirds

8:42-53.

SCO100217D9.WP5\95\CF

Revision: 0

Olson, T.M., and A. Martinez. 1993. Anaheim Bay Basin Update Plan Study, Draft Final

Report. Prepared for California Regional Water Quality Control Board, Santa Ana

Region. Department of Civil Engineering, University of California, Irvine. August.

Pardue, J.H., R.D. Dehune, and W. H. Patrick, Jr. 1992. Metal to Aluminum Correlation

in Louisiana Coastal Wetlands; Identification of Elevated Metal Concentrations. J.

Environ. Qual. 21:539-545.

Pearson, R.G., M.R., Litterick, and N. V. Jones. 1973. An Air-Lift for Quantitative

Sampling of the Benthos. Freshwater Biology 3:309-315.

Phillips, D.J.H. 1990. Arsenic in Aquatic Organisms: A Review Emphasizing Chemical

Speciation. Aquatic Toxicol. 16:151-186.

Phillips, P.T. 1988. California State Mussel Watch Ten Year Data Summary 1977-1987.

State Water Resources Control Board, Sacramento, Division of Water Quality. Water

Quality Monitoring Report No. 87-3. May.

Puls, R. 1988. Mineral Levels in Animal Health, Diagnostic Data. Sherpa International,

Clearbrook, B.C.

Rasmussen, D. 1992. Toxic Substances Monitoring Program, 1990 Data Report. State

Water Resources Control Board, Division of Water Quality, Sacramento. Water Quality

Monitoring Report 92-1WQ. May.

Reid, M. 1994. Personal communication from Mike Reid, State Water Resources
Control Board, to Marjorie Castleberry, CH2M HILL. February 4.

Roster, D.L. 1994. Personal Communication with Doug Roster, USFWS, to Harry M. Ohlendorf, CH2M HILL. 28 March.

Scheuhammer, A.M. 1987. The Chronic Toxicity of Aluminum, Cadmium, Mercury, and Lead in Birds: A Review. *Environ. Pollut.* 46:263-295.

Schmitt, C.J., J.L. Zajicek, and P. H. Peterman. 1990. National Contaminant Biomonitoring Program: Residues of Organochlorine Chemicals in U.S. Freshwater Fish, 1976-1984. *Arch. Environ. Contam. Toxicol.* 19:748-781.

Schmitt, C.J., and W.G. Brumbaugh. 1990. National Contaminant Biomonitoring Program: Concentrations of Arsenic, Cadmium, Copper, Lead, Mercury, Selenium, and Zinc in U.S. Freshwater Fish, 1976-1984. *Arch. Environ. Contam. Toxicol.* 19:731-747.

Schropp, S., F. Lewis, H. Windom, J. Ryan, F. Calder, and L. Burney. 1990. Interpretation of Metal Concentrations in Estuarine Sediments of Fluoride Using Aluminum as a Reference Element,. *Estuaries* 13:227-235.

Schuler, C.A. 1987. Impacts of Agricultural Drainwater and Contaminants on Wetlands at Kesterson Reservoir, California. Master of Science Thesis, Oregon State University, Corvallis. June.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Schwarzbach, S.E. 1994. Personal communication from Steve Schwarzbach, USFWS to Harry M. Ohlendorf, CH2M HILL. February 3.

Smythe, H. 1994. Personal Communication with Hope Smythe, Santa Ana RWQCB, to Marjorie Castleberry, CH2M HILL. 10 January.

Southwest Division, Naval Facilities Engineering Command (SWDIV). 1990. Naval Weapons Station Seal Beach, California. Installation Restoration Program, Final Site Inspection Report. Volume I - Technical Report. October.

	1992.	Navai	Weapons	Station	Seal	Beach,	California.	Installation
Restoration	Program, F	inal Wi	ldlife Refug	e Study	Work I	<i>Plan.</i> 23	July.	
•	1993.	Naval	Weapons	Station	Seal	Beach	California.	Installation
Restoration	Program,	Draft	Operable	Unit-4	Site	Inspec	tion Report	, Volume I.
28 October.								

Program, Draft Final Remedial Investigation Report. 31 December.

Program, Preliminary Draft Operable Unit 5 Site Inspection Report, 13 January.

Revision: 0

Stanley, T.R., Jr., J.W. Spann, G.J. Smith, and R. Rosscoe. 1994. Main and Interactive Effects in Arsenic and Selenium on Mallard. Reproduction and Duckling Growth and Survival. Archives of Environmental Contamination and Toxicology 26:444-451

State of Florida. 1993. Development of an Approach to the Assessment of Sediment Quality in Florida Coastal Waters. Florida Department of Environmental Regulation (January).

State of California. 1993. Status of the Bay Protection and Toxic Cleanup Program.

Staff Report. Bay Protection and Toxic Cleanup Program, State Water Resources

Control Board, Sacramento, California. November.

Stauble, D.K., et al. *Sediment Dynamics of a Sand Bypass Inlet.* Reprinted from "Coastal Sediments '87." WW Div./ASCE. New Orleans, Louisiana. May 1987.

Processes, pp 319-347 in: D.G. Aubrey and L. Weishar (eds.), Hydrodynamics and Sediment Dynamics of Tidal Inlets: Lecture Notes on Coastal and Estuarine Studies. Volume 29. Springer-Verlag. 1988.

Stickel, L.F. 1973. Pesticide Residues in Birds and Mammals. In *Environmental Pollution by Pesticides*, C.A. Edwards, ed. Plenum Press, New York, NY. Pp. 254-312.

U.S.D.I. 1993. Personal Communication (letter) from RaJean Strube Fossen, Bureau of Reclamation, to Harry Ohlendorf, CH2M HILL. 12 July.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

U.S. Fish and Wildlife Service. 1989. Unpublished Contaminant Data, Ecological Services Field Office, Laguna Niguel, California.

U.S. Fish and Wildlife Service and the U.S. Navy. 1990. Final Environmental Endangered Impact Statement. Species Management and Protection Plan. Naval Weapons Station Seal Beach, Seal Beach National Wildlife Refuge. August.

U.S. Food and Drug Administration. 1994. *Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed.* USFDA, Washington, D.C.

U.S. Navy. 1985. Initial Assessment Study of Naval Weapons Station, Seal Beach, California. Naval Energy and Environmental Support Activity (NEESA) 13-062, Port Hueneme, California.

Seal Beach, California. Naval Energy and Environmental Support Activity (NEESA) 21-0038, Port Hueneme, California.

Vermeer, K., F.A.J. Armstrong, and D.R.M. Hatch. 1973. Mercury in Aquatic Birds at Clay Lake, Western Ontario. *Journal of Wildlife Management* 37:58-61.

Vermeer, K., K.T. Briggs, K.H. Morgan, and D. Siegel-Causey, eds. Ottawa, Canada: Can. Wild. Serv. Spec. Publ. Pp. 232-240.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Weseloh, D., T.W. Custer, and B.M. Braune. 1989. "Organochlorine Contaminants in

Eggs of Common Terns from the Canadian Great Lakes, 1981." Environmental Pollution

59:141-160.

White D.H., M.T. Finley, and J.F. Ferrell. 1978. "Histopathologic Effects of Dietary

Cadmium on Kidneys and Testes of Mallard Ducks." Journal of Toxicology and Environ-

mental Health 4:551-558.

White, D.H., and M.T. Finley. 1978. Effects of Dietary Cadmium in Mallard Ducks.

Trace Substances in Environmental Health XII. A symposium. D. D. Hemphill, ed.

University of Missouri, Columbia. Pp. 220-223.

White, D.H., and M.P. Dieter. 1978. Effects of Dietary Vanadium in Mallard Ducks.

Journal of Toxicology and Environmental Health 4:43-50.

Zembal, R., and J.M. Fancher. 1988. Foraging Behavior and Foods of the Light-footed

Clapper Rail. Condor 90:959-962.

Appendix A

NWS SEAL BEACH WATERSHED AND LAND USE CHARACTERIZATION

Appendix A

NWS Seal Beach Watershed and Land Use

Characterization

Prepared by Beth Chambers, Don Kingery, and Kathy Freas

INTRODUCTION

The National Wildlife Refuge (NWR) Study at Naval Weapons Station (NWS) Seal Beach is

being conducted to assess the impacts of NWS Seal Beach operations on the NWR. The

911-acre NWR, located within the boundaries of the NWS, contains the remaining natural

tidal saltmarsh of the once larger Anaheim Bay system. The NWR is occupied by several

special-status species, including the California Brown Pelican, the American peregrine

Falcon, the Belding's Savannah Sparrow, the California Least Tern, and the Light-footed

Clapper Rail.

Several potential hazardous waste disposal sites and contaminated areas on the NWS were

identified during an Initial Assessment Study conducted in 1985. The purpose of the NWR

Study is to evaluate the impacts of NWS Seal Beach operations by evaluating hazardous

waste contaminants in the sediments and biota within the NWR and assessing the

A-1

CLE-C01-01F237-S2-0001

Final NWR Study Report CTO 0237

Version: Final Revision: 0

background levels of these contaminants. Background levels are defined as the levels of

contaminants that would exist in the NWR in the absence of NWS Seal Beach.

A phased approach has been defined for the study. The purpose of the first phase is to

assess contaminant levels in the sediments and biota in the NWR, evaluate the physical

processes involved in movement and distribution of contaminants throughout the NWR,

identify potential sources of contamination through assessment of the watershed land use

and runoff patterns, and identify criteria for choosing a comparable site to be used in the

determination of background contamination levels at the NWR. This technical memorandum

documents the results of the watershed land use and runoff characterization task for

Phase I of the Seal Beach NWR Study, and identifies criteria for choice of a comparable

site.

Objectives

The primary objectives of this task are to describe the physical characteristics of the

watershed, identify potential sources of contamination to the NWR, and develop criteria for

selection of a comparable site that may be used to directly characterize background

contaminant levels.

A-2

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Approach

Contamination is considered to come from sources either associated with the operations at

NWS Seal Beach, or those separate from NWS Seal Beach operations. The sources

separate from operations at NWS Seal Beach offer a measure of the background levels of

contaminants in the NWR. Selection and monitoring of a comparable site with similar land

use and watershed characteristics (minus the Naval Weapons Station) would allow

evaluation of contaminant levels that are representative of the background levels at the

NWR. This task supports the evaluation of background levels in the NWR by characterizing

the land use and runoff patterns of the surrounding watershed.

The emphasis of this task is the compilation of available data required to describe the land

use and runoff patterns for the watershed. Analysis of the data is consistent with the Phase

I objectives of the project of evaluating the characteristics of the watershed in order to

identify potential outside contamination sources and characterize the watershed. The

watershed characteristics are quantified to the extent discussed below. Additional analysis

will be performed during Phase II, as required, and will focus on the areas of importance

determined during Phase I.

The task is divided into three sequential subtasks: (1) Collection of available data on the

hydrology and land use of the surrounding watershed, (2) Incorporating the collected data

onto map overlays, and (3) Analysis and documentation of the data.

A-3

CLE-C01-01F237-S2-0001

Version: Final

Revision: 0

Data Collection

Data describing the hydrology and land use of the watershed surrounding the NWR were

collected from a variety of federal, state, and local agencies, as well as site visits and other

independent sources. U.S. Geological Survey (USGS) topographic maps were used to

develop the base map for the area and help determine the boundaries of the watershed.

Sources for hydrologic and runoff data included the Orange County Environmental

Management Agency (OCEMA), precipitation records from the California Department of

Water Resources (CDWR), Soil Conservation Service (SCS) soils maps, the U.S.

Environmental Protection Agency's (EPA's) STORET System database, and data from

various state and local agencies on drainage in the area. Land use data were obtained

from the CDWR, Orange County, local cities, and through recent aerial photographs.

A catalogue of pertinent data collected during this phase is included as Attachment 1 to this

Appendix.

Mapping

USGS 7-1/2 minute quadrangle maps were used to develop a base map of the area.

Delineation of watershed basin and subbasin boundaries and soils characteristics were

produced on mylar overlays to the base map. This base map, combined with the overlays,

A-4

Revision: 0

provides the working map for the Phase I analysis and any follow-on Phase II analysis of

contributions of watershed runoff to background contamination.

Analysis

Characterization of the watershed for the purposes of evaluating background contaminant

levels in the NWR requires understanding the hydrology of the area, characterizing land use

in the watershed, and evaluating waterborne pollutants in the watershed runoff. As

discussed above, an objective of characterizing the watershed is to develop criteria for

selection of a comparable site for determining background levels. The analysis focuses on

describing the watershed hydrology, topography, and land use patterns to a level required

for understanding potential sources of contaminants and for selection of a comparable site.

Evaluation of a candidate comparable site would consider similarities with the NWR

watershed with respect to precipitation, land use patterns, soil types, and topographical

features. Runoff from the watersheds is a function of the above watershed characteristics.

A site with similar precipitation, topography, soil types, and land use patterns would be

expected to have similar runoff patterns. To the extent that information is available, runoff

patterns are presented based on analysis in existing reports to indicate relative quantities of

runoff from each subbasin. No attempt has been made to rigorously quantify the runoff

from the watershed. Precipitation for the coastal and inland portions of the watershed is

characterized based on data from two representative stations. Land use patterns, soil

A-5

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

types, and topographical features are described in general terms for the watershed as a

whole.

In addition to characterizing the watershed, potential sources of contamination are

evaluated based on existing data. Existing water quality data were obtained using EPA's

STORET system, which is a database of sampling sites and their associated water quality

data.

Watershed Characterization

Figure 1 shows the watershed boundaries and major drainage pathways for surface water

runoff into the NWR. The watershed is divided into eight subbasins: NWS Seal Beach, and

seven areas surrounding NWS Seal Beach. The areas to the north and west of the NWS

that are not included within the watershed boundaries drain into the Pacific Ocean via the

San Gabriel River, thus would have a negligible effect on the contaminants entering the

NWR.

The watershed is extensively developed with runoff flowing through a series of flood control

channels (Figure 1). Potential pathways into the NWR for contaminants in surface water

runoff are direct runoff from NWS Seal Beach and via the NWR's connection with Anaheim

Bay. Pathways for surface water contaminants from the surrounding watershed (not

including the NWS) are through Anaheim Bay via discharges into Anaheim Bay, Huntington

A-6

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Harbour, and Bolsa Bay. Figure 2 shows surface water discharge points from the drainage

channels. A summary of the watershed subbasins shown in Figure 1 is presented as

Table 1.

The total watershed area, including NWS Seal Beach, is approximately 48,000 to

50,000 acres. Estimates of the surface area of the estuary (including Anaheim Bay, the

NWR, Huntington Harbour, and Bolsa Bay) were made using a planimeter to measure areas

on a USGS topographic map. The measured area was approximately 1,400 to 1,900 acres

for a watershed to estuary ratio of approximately 25:1 to 36:1.

Land Use and Topography

The topography of the watershed can be characterized as a flat, coastal plain with average

slopes for the subbasins 1 through 5 and 7 of less than 0.3 percent. The western portion of

subbasin 6 is predominantly marshland at or near sea level with hills with elevations

reaching 125 feet on the eastern end. The average slope from the eastern edge of the

watershed to the edge of the marsh is about 2.3 percent with an overall average slope

across the length of the watershed of about 0.8 percent.

Land use is a major factor affecting runoff and background contamination coming from the

watershed. Land use maps showing major land use classifications for the watershed

subbasins were obtained from the Department of Water Resources. The analysis was

A-9

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

simplified by combining classifications into the following groups: residential, commercial,

industrial, agricultural, and other. The group "other" includes parks, cemeteries, ornamental

landscaping, and unpaved open space.

The Anaheim Bay watershed is highly developed. Development is primarily residential, with

supporting park, school, and commercial developments interspersed throughout. Land use

in subbasin 6 is approximately half industrial, consisting of oil fields with about three

quarters of the remaining land in native and non-native vegetation and the rest residential.

Soils

SCO100217E0.WP5\95

Figure 3 indicates the soil associations for the overall watershed. A soil association is a

landscape with a distinctive proportional pattern of soils consisting of one or more major

soils and at least one minor soil. The hydrologic soil groups associated with each of the

soil associations are indicated in the legend for the map and are presented in Table 2.

Hydrologic soil groups are used to estimate runoff from precipitation.

The U.S. Department of Agriculture (USDA) Soil Conservation Service (SCS, undated)

describes the four hydrologic soil groups as:

A-10

Table 1 Watershed Subbasin Summary					
Subbasin	Primary Drainage Paths	Discharge Paths Point			
NWS	On-base ditches and channels	Estuary West Arm, Anaheim Bay, Bolsa Chica Channel	5,003		
1	Stanton Storm Channel Bolsa Chica Channel	Huntington Harbour (west)	5,610 to 5,860		
2	Anaheim-Barber City Channel	Huntington Harbour (west)	9,590 to 10,370		
3	Westminster Channel	Huntington Harbour (west)	6,960 to 7,350		
4	East Garden Grove - Wintersburg Channel Ocean View Channel	Bolsa Bay	17,946		
5	Sunset Channel	Huntington Harbour (east)	970		
6	(non point runoff)	Bolsa Bay	2,230		
7	Seal Beach Storm Drain and Pump Station	Anaheim Bay	250		
Watershed area for subbasin 6 based on planimeter measurement of estimated basin boundaries all other areas based on existing bydrology reports					

boundaries, all other areas based on existing hydrology reports.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

DISCHARGE POINTS
FOR RUNOFF FROM
ANAHEIM BAY WATERSHED
Seal Beach National Wildlife Refuge Study

Table 2 Hydrologic Soil Groups for Anaheim Bay Watershed				
Soil Association	Hydrologic Soil Group			
(1) Chino-Omni	C, D			
(2) Hueneme-Bolsa	B, C			
(3) Metz-San Emigdio	A, B			
(4) Sorrento-Mocho	В			
(5) Myford	D			
(6) Alo-Bosanko	D			

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These soils consist chiefly of deep, well-drained to excessively-drained sands or gravels. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These soils consist chiefly of moderately-deep or deep, moderately-well drained or well-drained soils that have moderately fine texture to moderately course texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils that have a layer that impedes the downward movement of water or soils with moderately-fine texture or fine texture. These soils have a slow rate of water transmission.

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly

wet. These consist chiefly of clay soils that have a high shrink-swell potential, soils that

have a permanent high water table, soils that have a claypan or clay layer at or near the

surface, and soils that are shallow over nearly impervious material. These soils have a very

slow rate of water transmission.

Soil patterns classified as Hueneme-Bolsa associations (#2 on the figure) make up

approximately 70 percent of the total watershed area. These soils have moderate to slow

rates of water transmission. Pockets of Metz-San Emigdio (#3) and Sorrento-Mocho (#4)

association soils account for 20 to 25 percent on the northeast portion of the watershed.

These soils have moderate to high rates of water transmission resulting in relatively low

runoff potential. The remaining 5 to 10 percent of the watershed consists of pockets of

Myford (#5) and Alo-Bosanko (#6) association soils along the coastline. These soils have

very slow rates of water transmission with high runoff potential.

Watershed Hydrology

Precipitation patterns were evaluated using data from the Santa Ana Fire Station (Index

No. 7888), representing precipitation patterns for the inland portions of the watershed, and

the Long Beach Fire Station (Index No. 5085), representing coastal patterns. Rainfall for

this area is highly variable with annual totals ranging from a low of 3.37 inches in 1961 to a

high of 26.26 inches in 1978. Monthly totals show comparable variability. The Long Beach

A-16

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

Fire Station records indicate a mean annual precipitation of 11.8 inches for a record period

from 1957 through 1980. Mean monthly rainfall values are highest from November through

April, with a peak in February of 2.83 inches. Little or no precipitation typically occurs

during the remaining months. Data for the Santa Ana Fire Station show patterns similar to

those for Long Beach, but with a slightly higher average annual rainfall of 12.4 inches for

the same period of record.

Runoff into Anaheim Bay from the watershed subbasins is low during most months, with

periods of higher flow during the winter and early spring corresponding to periods of higher

precipitation. A summary of data from stream gauge stations presented in the 1990-1991

Hydrologic Data Report for Orange County (OCEMA, 1991) is shown in Table 3. Data in

Table 3 represent runoff for the majority of the watershed. Not included in Table 3 are the

small subbasins for the residential areas around Huntington Harbour and in Seal Beach

(subbasins 5 and 7) or the basin containing the Bolsa Chica reserve. The records in

Table 3 are for a single year of data and provide a comparison between the various

subbasins, but do not necessarily represent flow for a typical year. Data summaries from

other years indicate that mean daily and total flows can be twice these values during wet

years.

Table 4 summarizes extreme precipitation event data obtained from various hydrology

reports. The data represent peak flows for 25- and 100-year events. These data are

typically used for stormwater management purposes, such as sizing drainage channels.

A-19

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

These data were not available for subbasin 6 (the Bolsa Chica Reserve) where drainage

improvements have not been made.

Contaminant Source Evaluation

Potential sources of contamination in the NWR can be evaluated using existing water and

sediment quality data taken throughout the watershed. These data were identified using the

EPA's STORET System database of sampling sites and their associated quality information.

Table 5 presents a summary of sampling sites that were identified, along with the years of

the first and last samples taken.

Summaries of data for the relevant stations are included with this Appendix as

Attachment 2. Each summary lists the parameters measured, number of detects, and

statistical information (maximum, minimum, mean, and variance) for the parameter

concentrations. These data include measurements for a wide range of organic and

inorganic constituents.

The significance of these data is evaluated in Appendix D, and considered in conjunction

with results of the hydrodynamic and sediments transport modeling, in order to assess the

potential for contamination in the NWR from the surrounding watershed.

A-20

Table 3 1990-91 Streamflow Data for Anaheim Bay Watershed Drainage						
Stream Gauge Location	Basin No.	Peak Daily Flow (1)	Mom. Peak Flow (1)	Normal Flow Range (1)	Mean Daily Flow (1991) (1)	Total Volume (2)
Bolsa Chica Channel @ Westminster (3)	1	1030 (0.176)	4040 (0.69)	0.2-1	11.58 (0.002)	8208 (1.40)
Anaheim-Barber City Channel before Bolsa Chica Channel	2	331 (0.032)	1763 (0.17)	0.3-5	4.77 (0.0005)	3224 (0.311)
Westminster Channel @ Beach	3	148 (0.020)	475 (.065)	0	7.8 (0.0011)	1118 (0.152)
E. Garden Grove- Wintersburg Channel	4	343 (0.019)	1280 (0.07)	1-4	6.33 (0.0004)	4501 (0.251)
	Totals:	1,852 (0.045)	7,558 (.182)	1.5-10	30 (0.0007)	17,051 (0.411)

- (1) Units are in cfs. Numbers in parentheses are relative to the watershed area with units in cfs/acre.
- (2) Units are in acre-ft. Numbers in parentheses are relative to the watershed area with units in acre-ft/acre.
- (3) High flows for the Bolsa Chica Channel are inconsistent with flows from previous years when compared to data from the channels for subbasins 2, 3, and 4. Possible error in streamflow data.

Table 4 Estimated Watershed Runoff from Orange County Flood Control District Hydrology Reports					
	Basin Size	Total Ru	noff (cfs)	Relative Runoff (cfs/acre)	
Subbasin	(acres)	25-year	100-year	25-year	100-year
1+2+3	23580		12000		0.509
2	9590		7450		0.777
3	7350	4520	6020	0.615	0.819
4	17946	9290	12480	0.518	0.695
5	970	740		0.763	
7	250	150	185	0.600	0.740

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

CLE-CO1-01F237-S2-0001 Version: Final Revision: 0

Table 5 Summary of Sampling Locations for Water Quality Data Retrieved from the Storet System Database						
Agency	Location ¹					
Orange County	(1) Old launch ramp, Bolsa Bay	1973-1991				
Environmental Management	(2) East Garden Grove-Wintersburg Channel at Warner Ave	1973-1974				
Agency (OCEMA)	(3) Huntington Harbour, 100 yards North of Warner Ave	1976-1991				
	(4) Mile Square Park Rain Sta.	1974-1979				
	(5) East Garden Grove-Wintersburg Channel at Golden West Street Bridge	1973-1992				
	(6) Huntington Harbour, circular bay north of Sharkfin and Marina Bay intersection	1979-1990				
	(7) Mile Square Park, south side of Phase I Lake	1976-1990				
	(8) Huntington Harbour at Broadway Street bridge	1979-1990				
	(9) Huntington Harbour, Christiana Bay	1976-1991				
	(10) C07 at Heil Ave bridge	1973-1983				
	(11) Huntington Harbour at entrance of Bolsa Chica Channel	1976-1991				
	(12) Huntington Harbour at Harbour entrance	1976-1990				
	(13) Mile Square Park, south side of Phase II Lake	1976-1990				
1	(14) Bolsa Chica Channel at Edinger Ave	1973				
	(15) Westminster Channel at Hazard/Beach Blvd	1976-1992				
	(16) Huntington Harbour, Sunset Bay at Navy Bouys ²	1976-1991				
	(17) C03 at Navy Railroad bridge	1979-1992				
	(18) Los Alamitos Retarding Basin at pump station inlet	1973-1981				
	(19) Bolsa Chica Channel at Bolsa Ave extension bridge	1973-1992				
Dept of Public Works	(20) Alamitos Barrier Project	1974-1986				
Numbers correspond to reference numbers on maps of the Anaheim Bay watershed (Figures 1 and 2). Sample station at the entrance to the middle and eastern arms of the NWR.						

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

Revision: 0

Conclusions and Recommendations

The above characterization of the Anaheim Bay watershed is adequate for assessing

potential sources of contaminants to the NWR and for selecting a comparable site for the

purpose of evaluating background levels of contaminants from sources other than NWS

Seal Beach. To the extent possible, the selected site should have similar relative watershed

size, topography, soil types, land use, and precipitation patterns to those described above.

A-25

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

REFERENCES

Orange County Environmental Management Agency. Hydrologic Data Report, 1990-1991
Season, Volume XXVII, Environmental Resources Division, Santa Ana, CA

Soil Conservation Service and Forest Service, Soil Survey of Orange County and Western Part of Riverside County, California, United States Department of Agriculture

blank page

Attachment 1

ANAHEIM BAY WATERSHED DATA SOURCES

Revision: 0

Attachment 1

ANAHEIM BAY WATERSHED DATA SOURCES

DATA COLLECTED

Land use maps

City of Fountain Valley

Land Use Plan, Buena Park General Plan, Adopted by Resolution 7315 on March 15, 1982, Amended March 22, 1991 by Resolution 9268. From OCEMA/Flood Program Division.

Department of Water Resources (DWR) land use maps corresponding to USGS topographic maps for Seal Beach, Newport Beach, Anaheim, and Los Alamitos.

Hydrology Reports

(From Orange County Environmental Management Agency (OCEMA) Public Works)

Los Alamitos Channel Facility No. C01 and Los Alamitos Retarding Basin Facility No. C01B01. Prepared by Orange County Flood Control District. Includes description of

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

drainage area, channels, 25- and 100-year discharge curves, Drainage Area Map, and Land

Use and Soil Group Map.

Hydrology Report No. C02-4. Bolsa Chica Channel, Facility No. C02. San Diego Freeway to

Cerritos Avenue.

Hydrology Report No. C00P02-2. Seal Beach Storm Drain, Facility No. C00P02.

Hydrology Report No. C00PS1-2. Seal Beach Pump Station, Facility No. C00PS1.

Hydrology Report No. C02-2. Bolsa Chica Channel, Facility No. C02, From Edinger Avenue

to Huntley Avenue.

Hydrology Report No. C03-4. Anaheim-Barber City Channel, Facility No. C03, entire

drainage system.

Hydrology Study, Westminster Channel, Facility No. C04, entire drainage area.

Hydrology Report for East Garden Grove-Wintersburg Channel (Facility No. C05), Bolsa

Chica Bay to Vermont Avenue, Volume I, July 1990.

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Hydrology Report No. C06-2, Ocean View Channel, Facility No. C06, entire drainage

system, November 1989.

Hydrology Report No. C07-1, Sunset Channel, Facility No. C07, entire drainage system.

Draft EIS/EIR for the Proposed Bolsa Chica Project - Describes drainage and watershed for

Bolsa Chica.

Anaheim Bay-Huntington Harbour Drainage Basin Map (EIR referenced in workplan)

Development of Water Facilities in the Santa Ana River Basin, California, 1810-1968. By

M.B. Scott, USGS, Open-File Report 77-398, May 1977.

Excepts from the 1990-1991 Hydrologic Data Report, OCEMA - Discharge summaries for 11

stream gaging stations, seasonal streamflow data for Westminster Channel station (No.

207), East Garden Grove-Wintersburg Channel (No. 217), Bolsa Chica Channel at

Westminster (No. 225), and Anaheim-Barber City Channel (No. 232).

Stormwater Pollution Prevention Plan, Naval Weapons Station, Seal Beach, CA, October

1992.

3

CLE-C01-01F237-\$2-0001 Version: Final

Revision: 0

Soil Survey of Orange County and Western Part of Riverside County, CA, United States

Department of Agriculture, Soil Conservation Service and Forest Service STORET system

data

Attachment 2 STORET SYSTEM SUMMARIES FOR SEDIMENT AND WATER QUALITY DATA FOR THE ANAHEIM BAY WATERSHED

STORET SUMMARY SECTION FOLLOWING IS A RETRIEVAL OF DATA FROM THE ENVIRONMENTAL PROTECTION AGENCY'S STORET SYSTEM, A DATABASE OF SAMPLING SITES AND THEIR ASSOCIATED QUALITY DATA. THE INFORMATION WAS RETRIEVED USING SPECIFIC STORET INSTRUCTION SETS IN COMBINATION TO SELECT ONLY THE DATA REQUESTED FOR THIS RETRIEVAL. BRIEF EXPLANATIONS OF THE INSTRUCTION SETS ARE INCLUDED BELOW. QUESTIONS MAY BE DIRECTED TO THE STORET USER ASSISTANCE SECTION AT (800) 424-9067. FOLLOWING IS THE FORMAT FOR THE STATION HEADER INFORMATION WHICH APPEARS ON EACH PAGE OF THE RETRIEVAL UNLESS STATION AGGREGATION WAS PERFORMED STATION NUMBER(S) LATITUDE/LONGITUDE PRECISION CODE STATION LOCATION STATE/COUNTY CODE STATE NAME COUNTY NAME MAJOR BASIN NAME MAJ/MIN/SUB BASIN CODE MINOR BASIN NAME *STATION TYPE AGENCY CODE STORED DATE HYDROLOGIC UNIT STATION DEPTH ELEVATION **ECOREGION** WATER BODY AQUIFERS LOCKED DATE *RIVER MILE INDEX CONTINUED ON NEXT PAGE(S)

RETRIEVAL PROGRAM

PGM=INVENT

THIS IS AN INVENTORY RETRIEVAL SHOWING SUMMARY STATISTICS FOR ALL PARAMETERS

NO BEGINNING DATE WAS REQUESTED -- STORET ASSUMED THE BEGINNING DATE WAS THAT OF THE OLDEST DATA VALUE FOUND NO ENDING DATE WAS REQUESTED -- STORET ASSUMED THE ENDING DATE WAS THAT OF THE MOST RECENT DATA VALUE FOUND

STATION SELECTION WAS BY:

LATITUDE/LONGITUDE COORDINATES OR AREA SURROUNDING A SPECIFIED COORDINATE

STATIONS SELECTED WERE RESTRICTED TO:

AGENCIES WHOSE DATA HAS NOT BEEN 'RETIRED'

CONTACTS FOR AGENCY CODES RETRIEVED:

AGENCY	PRIMARY CONTACT NAME	ORGANIZATION	PHONE NUMBER(S)
112WRD 21CAOCFC 111EPRI 21CALAFD	YORK, TOM COLLACUTT, BOB HOELMAN, LOUIS MITCHELL, JOHN K.	US GEOLOGICAL SURVEY ORANGE CNTY ENV MNGT AGCY USEPA HQ DEPT. OF PUBLIC WORKS	(703)648-5687 (714)634-7460 (202)260-7050 (818)458-3537
21CAL-1 21CAL-1 11BIOACC 11NATDC 12OWNIRS	LEWIN, SUZANNE KRONER, STEVE HOELMAN, LOUIS WEINER, LAWRENCE J.	CA WATER RES CONTROL BRD U.S. EPA MDSD USEPA HQ EPA/ODW	(916)322-4759 (202)260-4761 (202)260-7050 (202)382-2799
21CAL-4	LEWIN, SUZANNE	CA WATER RES CONTROL BRD	(916)322-4759

DATA RESTRICTIONS:

NOTE

NO DEPTH INDICATOR RESTRICTIONS WERE SPECIFIED - COMPUTATIONS WILL BE PERFORMED WITHOUT REGARD TO DEPTH INDICATORS

NOTE

NO GRAB/COMPOSITE RESTRICTIONS WERE UTILIZED, SO BOTH GRAB AND COMPOSITE SAMPLE TYPES MAY HAVE BEEN INCLUDED - COMPUTATIONS WILL BE PERFORMED WITHOUT REGARD TO SAMPLE TYPE

NOTE

NO COMPOSITE SAMPLE RESTRICTIONS WERE SPECIFIED - COMPUTATIONS WILL INCLUDE STATISTICAL FEATURES OF THE COMPOSITING PROCESS, PRODUCING VALID RESULTS ONLY WHEN SOPHISTICATED COMPOSITES ARE NOT ENCOUNTERED. SPECIFY COMPOSITE HANDLING KEYWORDS "ANC" AND/OR "DSROC" IF NEEDED

***** END OF SUMMARY SECTION *****

PAGE:

7

/TYPA/AMBNT/OCEAN

BBOLR 33 41 56.0 118 02 56.0 3 AT OLD LAUNCH RAMP 06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN BOLSA BAY

21CAOCFC 770817 0000 FEET DEPTH

HQ 18070201001 0007.630 OFF

		METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV		MINIMUM	BEG DATE END DATE
00010	WATER	TEMP	CENT	WATER			19.96400			27.0	12.0	77/06/07 91/08/14
00011	WATER	TEMP	FAHN	WATER	\$		67.93400			80.6	53.6	77/06/07 91/08/14
00076	TURB	TRBIDMTR	HACH FTU	WATER		91	2.370300	10.95400	3.309700	21.0	. 1	77/06/07 91/08/14
00094	CNDUCTVY	FIELD	MICROMHO	WATER			41724.00			60000	15000	77/10/11 91/08/14
					L	7	50000.00	.0000000	.0000000	50000	50000	77/08/09 84/08/21
					TOT		42477.00			60000	15000	77/08/09 91/08/14
00095	CNDUCTVY	AT 25C	MICROMHO	WATER			43494.00			60000	11000	77/06/07 91/08/14
00116	INTHSVE	SURVEY	IDENT	WATER			730600.0			730601	730601	78/01/10 81/02/10
00300	DO		MG/L	WATER			6.884300			14.2	1.6	77/06/07 91/08/14
00301	DÖ	SATUR	PERCENT	WATER	\$		74.33100			156.3	18.4	77/06/07 91/08/14
00310	BOD	5 DAY	MG/L	WATER	•		3.400000			5.0	3.0	78/04/11 81/05/19
00335		LOWLEVEL	MG/L	WATER			298.2800			806.0		
00000	000	LOWELVEL	ma/L	MATER	K		6.000000				24.0	77/06/07 79/05/09
					TOT					16.0	1.0	77/08/09 78/12/12
00400	DU		CII	WATER	101		256.5200			806.0	1.0	77/06/07 79/05/09
	PH		su	WATER			8.012600			11.00	6.62	77/06/07 91/08/14
00403	PH	LAB	su	WATER			7.862700			8.5	6.8	77/06/07 91/08/14
00530	RESIDUE	TOT NFLT	MG/L	WATER			56.87300			650	2	77/06/07 91/08/14
					K		4.500000			5	. 5	80/10/14 90/01/24
					TOT		51.69300			650	. 5	77/06/07 91/08/14
00535	RESIDUE	VOL NFLT	MG/L	WATER			23.83300			220	0	77/06/07 90/06/19
					K	14	4.357200	2.670400	1.634100	5	. 5	80/10/14 91/08/14
					TOT	90	20.80300	1098.500	33.14400	220	0	77/06/07 91/08/14
00550	OIL-GRSE	TOT-SXLT	MG/L	WATER		13	35.54500	10746.00	103.6600	380.0	. 1	78/04/11 85/10/15
					K	2	7.000000	8.000000	2.828400	9.0	5.0	83/11/08 86/10/15
					TOT	15	31.73900	9312.200	96.50000	380.0	.1	78/04/11 86/10/15
00610	NH3+NH4~	N TOTAL	MG/L	WATER		63			.5707100	4.200	.050	77/11/15 91/08/14
					K	29		.0199880		. 500	.050	77/06/07 89/07/12
					TOT	92			.4966300	4.200	.050	77/06/07 91/08/14
00612	UN-IONZD	NH3-N	MG/L	WATER		79			.0533770	. 385	.0004	77/06/07 91/08/14
	UN-IONZD	NH3-NH3	MG/L	WATER	Š	79		.0042121		.469	.0005	77/06/07 91/08/14
	TOT KJEL	N	MG/L	WATER	· ·				.8998000	4.200	.100	77/06/07 90/06/19
00023	IOI KOEL	17	ma/ L	WAILK	K	07						
					τοτ				.2070200	. 500	. 100	78/12/12 91/08/14
00650	T P04	P04	MG/L	WATER	101				.9032300	4.200	. 100	77/06/07 91/08/14
00030	1 PU4	PU4	MG/L	MAIEK		75			. 2849100	1.99	.01	77/06/07 91/08/14
					K	17			.2106400	.50	. 01	77/11/15 90/05/22
00000	D1100 1111	557 1157			TOT			.0/64450	. 2764900		.01	77/06/07 91/08/14
	PHOS MUD	DRY WGT		WATER			13.00000			13.0	13.0	82/06/02 82/06/02
	T ORG C	C	MG/L	WATER	K		3.000000			3.0	3.0	86/10/15 86/10/15
00747	SULFIDE	IN SED.	MG/KG	WATER		1	27.00000			27.00	27.00	82/06/02 82/06/02

/TYPA/AMBNT/OCEAN

PGM=INVENT

PAGE:

BBOLR

33 41 56.0 118 02 56.0 3 AT OLD LAUNCH RAMP 06059 CALIFORNIA

SANTA ANA RIVER BASIN

BOLSA BAY

21CAOCFC 770817 0000 FEET DEPTH

HQ 18070201001 0007.630 OFF

ORANGE

		METER		MEDIUM	RMK	NUMBER		VARIANCE			MINIMUM	BEG DATE END DATE
00955	SILICA	DISOLVED	MG/L	WATER		29	2.634500			12.9	. 2	77/06/07 80/11/12
					K	7		.1724900		1.0	. 01	78/11/07 80/08/12
					TOT		2.255800			12.9	. 01	77/06/07 80/11/12
01002	ARSENIC	AS, TOT	UG/L	WATER			17.42900			45	1	78/11/07 87/05/20
					K		9.000000			33	2	77/07/12 89/01/18
					TOT		12.27800			45	, , , i	77/07/12 89/01/18
	ARSENIC	SEDMG/KG	DRY WGT				2.666700			4.00	1.10	81/05/19 83/05/10
01027	CADMIUM	CD, TOT	UG/L	WATER	• •		26.50000			86 30	†	73/07/16 89/01/18
					K		8.066700			86	į	77/06/07 86/10/15 73/07/16 89/01/18
					TOT		16.96600				7	81/05/19 83/05/10
01028	CD MUD	DRY WGT	MG/KG~CD	WATER	1,0	2	.1445000			. 24	. 05	81/11/10 91/08/14
					K	3		.0234330		. 40 . 40	. 13 . 05	81/05/19 91/08/14
					TOT		.1918000 2.202000			4.70	. 31	81/05/19 91/08/14
	CHROMIUM		DRY WGT				25.77400			110	. 51	77/06/07 89/08/15
01034	CHROMIUM	CR, TOT	UG/L	WATER	V		20.24400			100	. 1	77/08/09 90/06/19
					K TOT		23.43100			110	: 1	77/06/07 90/06/19
01010	000050	A. TAT	110.71	WATER	101		42.87900			103		73/07/16 90/01/24
01042	COPPER	cu, tot	UG/L	WATER	K		18.85300			56	7	77/09/13 90/06/19
					TOT		33.38000			103	i	73/07/16 90/06/19
01043	000050	05040770	DRY WGT	WATER	101		3.496000			6.70	. 38	81/05/19 91/08/14
	COPPER	SEDMG/KG	UG/L	WATER			245.0000			400	110	83/11/08 86/10/15
01045 01051	IRON	FE,TOT PB.TOT	UG/L	WATER			64.72100			650	4	77/06/07 90/01/24
01021	LEAD	PB, 101	ud/L	MAIER	K		18.59300				ì	73/07/16 90/06/19
					TOT		42.49000				ī	73/07/16 90/06/19
01052	LEAD	SEDMG/KG	DRY WGT	WATED	, , ,		29.98000				3.90	81/05/19 91/08/14
	NICKEL	SEDMG/KG	DRY WGT		K	ĭ	.8000000	450.000		. 80	. 80	91/08/14 91/08/14
	SILVER	SEDMG/KG	DRY WGT		Ř	i	.2000000			. 20		91/08/14 91/08/14
01092		ZN. TOT	UG/L	WATER	• • • • • • • • • • • • • • • • • • • •	58	41.82800	997.5500	31,58400			77/06/07 90/01/24
01032	22110	2.117 101	uu. L		K		14.60000				2	73/07/16 90/06/19
					TOT	83	33.62700	869.4100	29.48600	150	2	73/07/16 90/06/19
01093	ZTNC	SEDMG/KG	DRY WGT	WATER			18.48000				3.40	81/05/19 91/08/14
01102		SN. TOT	UG/L	WATER	K	ī	1000.000			1000	1000	84/05/15 84/05/15
01143		SILICATE	UG/L SI		K K	ī	.1000000			. 1	. 1	83/05/10 83/05/10
	SELENIUM		UG/L	WATER	•	3	.8666700	.5033300	.7094600			79/05/09 87/05/20
		,			K	13	17.00000	804.8300	28.37000			77/07/12 88/07/22
					TOT	16	13.97500	686.2300	26.19600			77/07/12 88/07/22
01148	SELENIUM	SEDMG/KG	DRY WGT	WATER		1	.0080000			. 008		81/05/19 81/05/19
					K	2	. 7000000	.7200000	.8485300	1.30	.10	82/06/02 83/05/10

/TYPA/AMBNT/OCEAN

PGM=INVENT

PAGE:

9

BBOLR 33 41 56.0 118 02 56.0 3 AT OLD LAUNCH RAMP 06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN

BOLSA BAY

21CAOCFC 770817 0000 FEET DEPTH HQ 18070201001 0007.630 OFF

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
01148	SELENIUM :	SEDMG/KG	DRY WGT	WATER	TOT	3	.4693300	.5196200	.7208500	1.30	.008	81/05/19 83/05/10
	TOT COLI			WATER		19	4710.900	1944E+05	13946.00	49000	2	78/12/12 82/07/07
					K	13	476.9200	456920.0	675.9600	2000	200	80/01/22 81/11/10
					TOT	32	2990.900	1175E+05	10843.00	49000	2	78/12/12 82/07/07
32730	PHENOLS	TOTAL	UG/L	WATER	K	9	35.55600	302.7800	17.40100	50	10	78/04/11 82/11/09
		SEDUG/KG	DRY WGT		K	1	.2000000			. 200	. 200	91/08/14 91/08/14
	ACNAPTHE		DRY WGT	WATER	K	1	.2000000			. 200	. 200	91/08/14 91/08/14
34223	ANTHRACE	SEDUG/KG	DRY WGT	WATER	K	1	.2000000			. 200	. 200	91/08/14 91/08/14
34233	BENZBFLU	ORANTMUD	DRYUG/KG	WATER	K	1	.2000000			. 200	. 200	91/08/14 91/08/14
	BENZKFLU		DRY WGT	WATER	K	1	.2000000			. 200	. 200	91/08/14 91/08/14
	BENZAPYR		DRY WGT	WATER	K	1	. 2000000			. 200	. 200	91/08/14 91/08/14
34257	BETA BHC	SEDUG/KG	DRY WGT	WATER	K	1	10.00000			10.000	10.000	91/08/14 91/08/14
34259	DELTABHO		TOTUG/L	WATER	K	1	10.00000			10.000	10.000	82/11/09 82/11/09
34262	DELTABHO	SEDUG/KG	DRY WGT	WATER	K	1	10.00000			10.000	10.000	91/08/14 91/08/14
34323	CHRYSENE	SEDUG/KG	DRY WGT	WATER	K	1	.2000000			. 200	. 200	91/08/14 91/08/14
34337	DIETHYLP	HTHALATE	DISSUG/L	WATER	K	1	10.00000			10.000	10.000	82/11/09 82/11/09
34338	DIETHYLP	HTHALATE	SUSPUG/L	WATER	K	1	10.00000			10.000	10.000	82/11/09 82/11/09
34351	ENDSULSF		TOTUG/L	WATER	K	1	10.00000			10.000	10.000	82/11/09 82/11/09
34354	ENDSULSF	SEDUG/KG	DRY WGT	WATER	K	1	10.00000			10.000		91/08/14 91/08/14
34356	B-ENDO	SULFAN	TOTWUG/L	WATER	K K	1	10.00000			10.000	10.000	82/11/09 82/11/09
34359	BENDOSUL	SEDUG/KG	DRY WGT	WATER	K	1	10.00000			10.000		91/08/14 91/08/14
34361	A-ENDO	SULFAN	TOTWUG/L	WATER	K	1	10.00000			10.000		82/11/09 82/11/09
34364	AENDOSUL	SEDUG/KG	DRY WGT	WATER	K	1	10.00000			10.000		91/08/14 91/08/14
	ENDRINAL		DRY WGT	WATER	K	1	10.00000			10.000		91/08/14 91/08/14
	FLANTENE		DRY WGT	WATER	K	1	.2000000			. 200		91/08/14 91/08/14
34384	FLUORENE	SEDUG/KG	DRY WGT	WATER	K K	1	.2000000			. 200	.200	91/08/14 91/08/14
	I123CDPR		DRY WGT	WATER	K	1	.2000000			. 200	.200	91/08/14 91/08/14
	NAPTHALE		DRY WGT	WATER	K	1	.2000000			. 200	.200	91/08/14 91/08/14
34464	PHENANTH	SEDUG/KG	DRY WGT	WATER	K	1	. 2000000			. 200		91/08/14 91/08/14
34472	PYRENE	SEDUG/KG	DRY WGT	WATER	K	1	.4000000			. 400		91/08/14 91/08/14
34529	BENZAANT	SEDUG/KG	DRY WGT	WATER	. K	1	. 2000000			. 200		91/08/14 91/08/14
34559	DBAHANTH	SEDUG/KG	DRY WGT	WATER	K	1	. 2000000			. 200		91/08/14 91/08/14
34671	PCB	1016	TOTWUG/L	WATER	K	3	1.000000		.0000000			81/11/10 82/11/09
38260	MBAS		MG/L	WATER		9	. 2544500	.1181500	.3437300	1.10	. 03	79/05/09 85/10/15
					K	4	.0550000	.0027000	.0519620	.10		78/04/11 86/10/15
					TOT	13			.2977000	1.10		78/04/11 86/10/15
39034	PERTHANE	WHL SMPL	UG/L	WATER	K	2	5.500000	40.50000	6.364000	10.000		81/11/10 82/11/09
39076	ALPHABHC	SEDUG/KG	DRY WGT	WATER	K		10.00000			10.000		91/08/14 91/08/14
		SEDUG/KG	DRY WGT	WATER	K	1	10.00000			10.00	10.00	91/08/14 91/08/14

PAGE:

10

/TYPA/AMBNT/OCEAN

BBOLR 33 41 56.0 118 02 56.0 3 AT OLD LAUNCH RAMP

06059 CALIFORNIA ORANGE

SANTA ANA RIVER BASIN

BOLSA BAY 21CAOCFC 770817 0000 FEET DEPTH

HQ 18070201001 0007.630 OFF

39321 P,P'DDE SEDUG/KG DRY WGT WATER K 1 10.00000 10.000 10.00 91/08/14 91/08/15 39330 ALDRIN TOT UG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/08 39333 ALDRIN SEDUG/KG DRY WGT WATER K 4 15.00000 33.333300 5.773500 20.00 10.00 81/05/19 91/08/15 39340 GAMMABHC LINDANE TOT.UG/L WATER K 4 1.000000 .0000000 .0000000 1.000 1.000 81/05/19 82/11/08 39343 GBHC-MUD LINDANE DRYUG/KG WATER K 4 15.00000 33.33300 5.773500 20.00 10.00 81/05/19 91/08/15 39350 CHLRDANE TECH\$MET TOT UG/L WATER K 4 1.000000 .0000000 .0000000 1.000 1.000 81/05/19 91/08/15 39351 CDANEDRY TECH\$MET MUDUG/KG WATER K 4 37.50000 1758.300 41.93300 100.00 10.00 81/05/19 91/08/15 39360 DDD WHL SMPL UG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/08 39363 DDD MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/11/08 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 1.000 81/05/19 82/11/08 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 1.000 81/05/19 82/11/08 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 1.000 81/05/19 82/11/08 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 81/05/19 82/11/08 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 81/05/19 82/11/08 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 81/05/19 82/11/08 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 81/05/19 82/11/08 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 .0000000 1.000 81/05/19 82/11/08		PARAM	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MUMIXAM	MINIMUM	BEG DATE END DATE
39330 ALDRIN TOT UG/L WATER K 4 1.000000 .00000000 1.000 1.000 81/05/19 82/11/05 39333 ALDRIN SEDUG/KG DRY WGT WATER K 4 15.00000 33.333300 5.773500 20.00 10.00 81/05/19 91/08/15 39340 GAMMABHC LINDANE TOT.UG/L WATER K 4 1.000000 .0000000 .0000000 1.000 1.000 81/05/19 82/11/05 39343 GBHC-MUD LINDANE DRYUG/KG WATER K 4 15.00000 33.333300 5.773500 20.00 10.00 81/05/19 91/08/15 39350 CHLRDANE TECH\$MET TOT UG/L WATER K 4 1.000000 .0000000 .0000000 1.000 1.000 81/05/19 91/08/15 39351 CDANEDRY TECH\$MET MUDUG/KG WATER K 4 37.50000 1758.300 41.93300 100.00 10.00 81/05/19 82/11/05 39360 DDD WHL SMPL UG/L WATER K 4 1.000000 .0000000 .0000000 1.000 10.00 81/05/19 82/11/05 39363 DDD MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/11/05 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/05 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/05 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/05	39311	P,P'DDD S	SEDUG/KG	DRY WGT	WATER		1	10.00000			10.00	10.00	91/08/14 91/08/14
39333 ALDRIN SEDUG/KG DRY WGT WATER K 4 15.00000 33.33300 5.773500 20.00 10.00 81/05/19 91/08/10 39340 GAMMABHC LINDANE TOT.UG/L WATER K 4 1.000000 .0000000 .0000000 1.000 1.000 81/05/19 82/11/00 39343 GBHC-MUD LINDANE DRYUG/KG WATER K 4 15.00000 33.33300 5.773500 20.00 10.00 81/05/19 91/08/10 39350 CHLRDANE TECH\$MET TOT UG/L WATER K 4 1.000000 .0000000 .0000000 1.000 1.000 81/05/19 82/11/00 39351 CDANEDRY TECH\$MET MUDUG/KG WATER K 4 37.50000 1758.300 41.93300 100.00 10.00 81/05/19 82/11/00 39360 DDD WHL SMPL UG/L WATER K 4 1.000000 .0000000 .0000000 1.000 10.00 81/05/19 82/11/00 39363 DDD MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 10.00 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 10.00 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 10.00 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 10.00 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 10.00 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 10.00 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 10.00 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 10.00 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 10.00 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 10.00 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 10.000 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/11/00 39368 DDE MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.			SEDUG/KG				1						91/08/14 91/08/14
39340 GAMMABHC LINDANE TOT.UG/L WATER K 4 1.000000 .0000000 .0000000 1.000 81/05/19 82/11/05 39343 GBHC-MUD LINDANE DRYUG/KG WATER K 4 15.00000 33.333300 5.773500 20.00 10.00 81/05/19 91/08/1 39350 CHLRDANE TECH\$MET TOT UG/L WATER K 4 1.000000 .0000000 .0000000 1.000 1.000 81/05/19 82/11/0 39351 CDANEDRY TECH\$MET MUDUG/KG WATER K 4 37.50000 1758.300 41.93300 100.00 10.00 81/05/19 91/08/1 39360 DDD WHL SMPL UG/L WATER K 4 1.000000 .0000000 .0000000 1.000 10.00 81/05/19 82/11/0 39363 DDD MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 10.00 81/05/19 82/11/0 39368 DDE WHL SMPL UG/L WATER K 4 1.000000 .0000000 .0000000 1.000 10.00 81/05/19 82/11/0 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 1.000 81/05/19 82/11/0 39368 DDE MUD UG/KG WATER K 4 1.000000 .0000000 .0000000 1.000 1.000 81/05/19 82/11/0 39368 DDE MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/06/0													81/05/19 82/11/09
39343 GBHC-MUD LINDANE DRYUG/KG WATER K 4 15.00000 33.33300 5.773500 20.00 10.00 81/05/19 91/08/13 39350 CHLRDANE TECH\$MET TOT UG/L WATER K 4 1.000000 .0000000 .0000000 1.000 1.000 81/05/19 82/11/0 39351 CDANEDRY TECH\$MET MUDUG/KG WATER K 4 37.50000 1758.300 41.93300 100.00 10.00 81/05/19 91/08/1 39360 DDD WHL SMPL UG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0 39363 DDD MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/11/0 39368 DDE WHL SMPL UG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0 39368 DDE MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/06/0						K							
39350 CHLRDANE TECH\$MET TOT UG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0 39351 CDANEDRY TECH\$MET MUDUG/KG WATER K 4 37.50000 1758.300 41.93300 100.00 10.00 81/05/19 91/08/1 39360 DDD WHL SMPL UG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0 39363 DDD MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/06/0 39365 DDE WHL SMPL UG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0 39368 DDE MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/11/0						K							
39351 CDANEDRY TECH\$MET MUDUG/KG WATER K 4 37.50000 1758.300 41.93300 100.00 10.00 81/05/19 91/08/1 39360 DDD WHL SMPL UG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0 39363 DDD MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/06/0 39365 DDE WHL SMPL UG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0 39368 DDE MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/06/0						K	4						
39360 DDD WHL SMPL UG/L WATER K 4 1.000000 .00000000 1.000 1.000 81/05/19 82/11/0 39363 DDD MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/06/0 39365 DDE WHL SMPL UG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0 39368 DDE MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/06/0							4						
39363 DDD MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/06/0 39365 DDE WHL SMPL UG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0 39368 DDE MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/06/0							4						
39365 DDE WHL SMPL UG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0 39368 DDE MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/06/0							4						
39368 DDE MUD UG/KG WATER K 3 16.66700 33.33400 5.773600 20.00 10.00 81/05/19 82/06/0						K							
the state of the s													
							3						
							4						81/05/19 82/11/09
			MUD										81/05/19 82/06/02
													81/05/19 82/11/09
39383 DIELDRIN SEDUG/KG DRY WGT WATER K 4 15.00000 33.33300 5.773500 20.00 10.00 81/05/19 91/08/1			SEDUG/KG			K							81/05/19 91/08/14
						K							81/05/19 82/11/09
			SEDUG/KG										81/05/19 91/08/14
39400 TOXAPHEN TOTUG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0							4						81/05/19 82/11/09
39403 TOXAPHEN SEDUG/KG DRY WGT WATER K 4 5012.500 99833000 9991.700 20000.00 10.00 81/05/19 91/08/1			SEDUG/KG			K	4						81/05/19 91/08/14
						K							81/05/19 82/11/09
39413 HEPTCHLR SEDUG/KG DRY WGT WATER K 4 15.00000 33.33300 5.773500 20.00 10.00 81/05/19 91/08/1			SEDUG/KG			K							81/05/19 91/08/14
							4						81/05/19 82/11/09
							4						81/05/19 91/08/14
39480 MTHXYCLR WHL SMPL UG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0							4						81/05/19 82/11/09
			MUD DRY				4						81/05/19 91/08/14
39488 PCB-1221 TOTUG/L WATER K 3 1.000000 .0000000 1.000 1.000 81/11/10 82/11/0						K							81/11/10 82/11/09
			SEDUG/KG			K							82/06/02 91/08/14
39492 PCB-1232 TOTUG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0						K	4						81/05/19 82/11/09
			SEDUG/KG				4						81/05/19 91/08/14
39496 PCB-1242 TOTUG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0						K	4						81/05/19 82/11/09
39499 PCB-1242 SEDUG/KG DRY WGT WATER K 4 37.50000 1758.300 41.93300 100.00 10.00 81/05/19 91/08/1			SEDUG/KG			K	4						81/05/19 91/08/14
						K	-						81/11/10 82/11/09
39503 PCB-1248 SEDUG/KG DRY WGT WATER K 2 60.00000 3200.000 56.56900 100.00 20.00 82/06/02 91/08/1			SEDUG/KG			K		•					82/06/02 91/08/14
39504 PCB-1254 TOTUG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0						K	4						81/05/19 82/11/09
39507 PCB-1254 SEDUG/KG DRY WGT WATER K 4 37.50000 1758.300 41.93300 100.00 10.00 81/05/19 91/08/1			SEDUG/KG			K	4						81/05/19 91/08/14
39508 PCB-1260 TOTUG/L WATER K 4 1.000000 .0000000 1.000 1.000 81/05/19 82/11/0						K							81/05/19 82/11/09
						K			1758.300	41.93300			81/05/19 91/08/14
39514 PCB-1016 SEDUG/KG DRY WGT WATER K 1 100.0000 100.00 91/08/14 91/08/1	39514	PCB-1016 8	SEDUG/KG	DRY WGT	WATER	K	1	100.0000			100.00	100.00	91/08/14 91/08/14

/TYPA/AMBNT/OCEAN

PGM=INVENT

PAGE:

11

BBOLR

33 41 56.0 118 02 56.0 3

AT OLD LAUNCH RAMP

06059 CALIFORNIA SANTA ANA RIVER BASIN ORANGE

BOLSA BAY

21CAOCFC 770817 0000 FEET DEPTH

HQ 18070201001 0007.630 OFF

	PAR	AMETER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
39530	MALATHN	WHL SMPL	UG/L	WATER	K	1	10.00000			10.000		82/11/09 82/11/09
39531	MALATHN	MUD	UG/KG	WATER	K	2	25.00000	50.00000	7.071100		20.00	81/11/10 91/08/14
39540	PARATHN	WHL SMPL	UG/L	WATER	K	1	10.00000	-		10.000	10.000	82/11/09 82/11/09
39541	PARATHN	MUD	UG/KG	WATER	K	2	25.00000	50.00000	7.071100		20.00	81/11/10 91/08/14
39730	2,4-D	WHL SMPL	UG/L	WATER	K	3	10.00000	.0000000	.0000000	10.000	10.000	81/11/10 82/11/09
39731	2,4-D	MUD	UG/KG	WATER	K	4	1325.000		2450.000	5000.00	100.00	81/11/01 91/08/14
39760	SILVEX	WHL SMPL	UG/L	WATER	K	3	10.00000	.0000000	.0000000	10.000	10.000	81/11/10 82/11/09
39761	SILVEX	MUD	UG/KG	WATER	K	4	575.0000	902500.0	950.0000	2000.00	100.00	81/11/01 91/08/14
39782	LINDANE	WHL SMPL	UG/L	WATER	K	4	1.000000	.0000000	.0000000	1.000	1.000	81/05/19 82/11/09
39783	LINDANE	MUD DRY	UG/KG	WATER	K	3	16.66700	33.33400	5.773600	20.00	10.00	81/05/19 82/06/02
71850	NITRATE	TOT-NO3	MG/L	WATER		49	3.595700	25.28300	5.028200	20.8	. 1	77/07/12 91/08/14
					K.	42	.4338100	.4105000	.6407000	4.4	.01	77/06/07 90/06/19
					TOT	91	2.136400	16.18300	4.022900	20.8	. 01	77/06/07 91/08/14
71885	IRON	FE		WATER		1	150.0000			150.00	150.00	77/07/12 77/07/12
71900	MERCURY	HG, TOTAL	UG/L	WATER		4	5.050000	10.81000	3.287900	9.0	1.2	79/05/09 82/06/02
					K	10			.7874000		. 2	77/07/12 88/07/22
					TOT	14			2.590200		. 2	77/07/12 88/07/22
71921	MERCURY	SEDMG/KG	DRY WGT	WATER		2			.0176780		.01	81/11/10 82/06/02
					K	2			.0636400		.01	81/05/19 83/05/10
·					TOT	4			.0420030	. 1	.01	81/05/19 83/05/10
74041	WQF	SAMPLE	UPDATED					1371E+05	11712.00		860729	85/10/15 91/08/14
	PCB-1262		WT UG/KG		K	1	100.0000			100.000	100.000	91/08/14 91/08/14
	BZO(GHI)				K	1	.2000000			. 20	. 20	91/08/14 91/08/14
	PERTHANE				K			1632E+06	40403.00	70000.00	20.000	81/11/01 91/08/14
82007	% SAND	IN SED	DRY_WGT	WATER			1.200000			1.20	1.20	82/06/02 82/06/02
	SEDIMENT		SILT	WATER			92.60000			92.60	92.60	82/06/02 82/06/02
82009	SEDIMENT	PARTSIZE	CLAY	WATER		1	6.200000			6.20	6.20	82/06/02 82/06/02

PAGE:

13

/TYPA/AMBNT/STREAM

EGDC05
33 42 45.0 118 01 00.0 3
WARNER AVE
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140792
EAST GARDEN GROVE WINTERS- BURG CHANNEL
21CAOCFC 18070201
0999 FEET DEPTH

	DADA	METER		MEDIUM	A RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE	END DATE
00010	WATER	TEMP	CENT	WATER			17.87500			26.0	11.0	73/12/03	
00011	WATER	TEMP	FAHN	WATER	\$	-	64.17500			78.8	51.8		74/08/06
00061	STREAM	FLOW.	INST-CFS		j	Ă	86.25000			200	5		74/06/03
	CNDUCTVY	AT 25C	MICROMHO		~	10	3451.000			13020	164	73/04/06	
00310	BOD	5 DAY	MG/L	WATER			4.800000			5.6	4.0	73/12/03	74/01/07
00403	PH	LAB	su	WATER			7.710000			8.4	6.9		74/08/06
	RESIDUE	TOT NELT	MG/L	WATER		ā	230.5500			720	27	73/12/03	74/08/06
	OIL-GRSE		MG/L	WATER		2				43.2	1.8	74/01/07	74/07/09
	NH3+NH4-		MG/L	WATER		ā		.6858700		1.800	.080		74/08/06
00010	14170 - 14114-	IT TOTAL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		K	6		.0066667		. 300	.100		74/07/09
					TOT	10		.2735800		1.800	.080	73/04/06	74/08/06
00612	UN-IONZD	NH3-N	MG/L	WATER	\$	8		.0010058		.092	. 0005	73/12/03	74/08/06
	UN-IONZD	NH3-NH3	MG/L	WATER	\$	8		.0014869		.111	.0006		74/08/06
	TOT KJEL	N	MG/L	WATER	•	7	2.471400			3.880	1.600	73/12/03	74/08/06
00020		••			K	i	.1000000			.100	.100	74/07/09	74/07/09
					TOT	8	2.175000	1.720600	1.311700	3.880	.100	73/12/03	74/08/06
00650	T P04	P04	MG/L	WATER	-	10	.7010000	.3180600	.5639600	1.73	.06	73/04/06	74/08/06
00955	SILICA	DISOLVED	MG/L	WATER		10	5.110000	9.252200	3.041700	11.8	1.1	73/04/06	74/08/06
01002	ARSENIC	AS, TOT	UG/L	WATER	K	2	.7500000	.1250000	.3535500	1	. 5	74/01/07	74/07/09
	CADMIUM	CD, TOT	UG/L	WATER		2	5.000000	18.00000	4.242600	8	2	74/01/07	74/07/09
			UG/L	WATER		1	10.00000			10	10	74/07/09	74/07/09
	COPPER	CU. TOT	UG/L	WATER		1	20.00000			20	20	74/07/09	74/07/09
					K	1	12.00000			12	12	74/01/07	74/01/07
					TOT	2	16.00000	32.00000	5.656900	20	12	74/01/07	74/07/09
01045	IRON	FE, TOT	UG/L	WATER		. 2	3275.000		3146.600	5500	1050		74/07/09
01051		PB, TOT	UG/L	WATER		4	130.2800	29398.00	171.4600	380	. 1		74/07/09
01092		ZN, TOT	UG/L	WATER		2	79.50000	112.5000	10.60700	87	72		74/07/09
	SELENIUM		UG/L	WATER		2	8.700000	56.18000	7.495300	14	3		74/07/09
	ALDRIN	•	TOT UG/L	WATER	K	1	.0100000			.010			74/01/07
39340	GAMMABHO	LINDANE	TOT.UG/L	WATER		1	.4000000			.400			74/01/07
39350	CHLRDANE	TECHSMET	TOT UG/L	WATER	K	1	.6000000			. 600	.600		74/01/07
39360	DDD	WHL SMPL	UG/L	WATER	K	1	.0100000			.010	.010		74/01/07
39365	DDE	WHL SMPL	UG/L	WATER	K	1	.0100000			.010	.010		74/01/07
39370	DDT	WHL SMPL	UG/L	WATER	K	1	.0100000			.010	.010		74/01/07
39380	DIELDRIN		TOTUG/L		K	1	.0500000			.050			74/01/07
39390	ENDRIN		TOT UG/L		K	1	.1000000			.100			74/01/07
39410	HEPTCHLR		TOTUG/L			1	.5400000			. 540			74/01/07
39420	HPCHLREP		TOTUG/L		K	1	.0200000			.020	.020		74/01/07
39480	MTHXYCLR	WHL SMPL	UG/L	WATER	K	1	.0500000			.050	.050	74/01/07	74/01/07

STORET RETRIEVAL DATE 93/04/08

/TYPA/AMBNT/STREAM

PGM=INVENT

PAGE:

14

EGDC05

33 42 45.0 118 01 00.0 3

WARNER AVE

06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140792

EAST GARDEN GROVE WINTERS- BURG CHANNEL

21CAOCFC 0999 FEET DEPTH 18070201

PARAMETER	MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE	
39780 DICOFOL WHL SMPL	UG/L	WATER	K	1	.0100000			.010	.010	74/01/07 74/01/07
39782 LINDANE WHL SMPL	UG/L	WATER	K	1	.0200000			. 020	.020	74/01/07 74/01/07
71850 NITRATE TOT-NO3	MG/L	WATER		10	19.81000	312.0300	17.66500	50.6	3.5	73/04/06 74/08/06
71900 MERCURY HG, TOTAL	UG/L	WATER	K	2	1.250000	1.125000	1.060700	2.0	. 5	74/01/07 74/07/09

/TYPA/AMBNT/ESTURY

PGM=INVENT

PAGE:

15

HUNWAR 33 42 45.0 118 03 34.0 2 100 YARDS NORTH OF WARNER AVENUE 06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700 HUNTINGTON HARBOUR

21CAOCFC 770210 0999 FEET DEPTH

HQ 18070201001 0008.910 OFF

		METER		MEDIUM	RMK	NUMBER		VARIANCE	STAN DEV		MINIMUM	BEG DATE END DATE
00010	WATER	TEMP	CENT	BOTTOM			21.50000	11 65200	3.413600	21.5 27.1	21.5 10.0	91/08/13 91/08/13 76/11/22 91/08/13
00011	WATER	TEMP	FAHN	WATER BOTTOM	\$		70.70000	11.65500	3.413600	70.7	70.7	91/08/13 91/08/13
00011	MMIER	IEMP	FAUIT	WATER	š			37.76000	6.144900	80.8	50.0	76/11/22 91/08/13
00035	WIND	VELOCITY	MPH	WATER	•				2.956900	10.0	.0	77/12/14 91/08/13
00036	WIND	DIR FROM		WATER		57	225.4400	2179.800	46.68800	315	90	78/12/13 91/08/13
00065	STREAM	STAGE	FEET	WATER		98	2.998000	2.433800	1.560100	7.00	. 00	76/11/22 88/03/24
00067	TIDE	STAGE	CODE	WATER			3496.900		2341.100	7610	.5	76/11/22 88/03/24
00076	TURB	TRBIDMTR						26.25100		45.0	. 1	76/11/22 91/08/13
00078	TRANSP	SECCHI	METERS	WATER				.1340400		2.50	1.00	84/08/22 91/08/13
					_ L			.5833400		2.00	. 50	84/05/22 86/03/20
					TOT			.1654800	.4067900	2.50	. 50	84/05/22 91/08/13
00094	CNDUCTVY	FIELD	MICROMHO				51500.00		4217 000	51500	51500	91/08/13 91/08/13
				WATER					4317.800	55700	12400	77/01/27 91/08/13
	CNDUCTVY		MICROMHO						6740.600	69000	13300	76/11/22 91/08/13
00116	INTHSVE	SURVEY	IDENT	WATER			5.200000	. 0000000	.0000000	730601 5.2	730601 5.2	78/02/16 79/01/10 91/08/13 91/08/13
00300	DO		MG/L	BOTTOM				2 140000	1 465000			76/12/21 91/08/13
				WATER	•		15.00000	2.149000	1.465900	15.0	15.0	76/11/22 76/11/22
					τοτ			2 343900	1.531000		3.7	76/11/22 91/08/13
00301	DO	SATUR	PERCENT	BOTTOM	*		57.77800	2.343900	1.551000	57.8	57.8	91/08/13 91/08/13
00301	ы	SAIUR	PERCENT	WATER	š			272.2500	16.50000		42.0	76/11/22 91/08/13
00310	BOD	5 DAY	MG/L	WATER	. •	333			3.403400		2.0	78/04/12 79/10/10
00315	COD	LOWLEVEL	MG/L	WATER		27			284.3000			77/06/08 79/05/10
00000	000				K				.0000000			77/08/10 77/09/14
					TOT				281.9400	1370.0	20.0	77/06/08 79/05/10
00400	PН		su	BOTTOM		1	7.500000			7.50	7.50	91/08/13 91/08/13
				WATER		337	7.906200	.0841590	.2901000			76/11/22 91/08/13
00403	PH	LAB	su	WATER	•				. 2350000			76/11/22 91/08/13
00530	RESIDUE	TOT NFLT	MG/L	WATER					104.3800			76/11/22 91/08/13
					K				1.504600			80/01/24 90/04/12
					TOT				96.16200			76/11/22 91/08/13
00535	RESIDUE	VOL NFLT	MG/L	WATER					37.85300			77/04/13 90/06/21
					K				2.195000			78/12/13 91/08/13
					TOT				33.09300			77/04/13 91/08/13
00550	OIL-GRSE	TOT-SXLT	MG/L	WATER					19.43300			78/04/12 85/10/16
					K	. 3			2.598100			79/05/10 86/10/15 78/04/12 86/10/15
00610	1012 - 1014	M TOTAL	NO /1	WATER	TOT				17.67100 .4213800			76/11/22 91/08/13
00610	NH3+NH4-	NIUIAL	MG/L	WATER		12	. 4231000	.1//5600	.4213000	3.100	.000	/0/11/22 91/00/15

PAGE:

16

/TYPA/AMBNT/ESTURY

HUNWAR 33 42 45.0 118 03 34.0 2 100 YARDS NORTH OF WARNER AVENUE 06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700 HUNTINGTON HARBOUR

21CAOCFC 770210 0999 FEET DEPTH

HQ 18070201001 0008.910 OFF

		METER		MEDIUM	RMK	NUMBER	MEAN		STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
	NH3+NH4-		MG/L	WATER	K	32	.1125000		.0707110	.500	. 100	76/12/21 85/05/22
	NH3+NH4-		MG/L	WATER	TOT	104	.3317300	.1454700	.3814000	3.100	.060	76/11/22 91/08/13
	UN-IONZD	NH3-N	MG/L	WATER		93	.0122370	.0002066	.0143740	.088	. 0004	76/11/22 91/08/13
00619	UN-IONZD	NH3-NH3	MG/L	WATER	\$	93	.0148790	.0003054	.0174770	.107	.0005	76/11/22 91/08/13
00625	TOT KJEL	N	MG/L	WATER		98	1.076600	1.033800	1.016800	7.600	. 100	76/11/22 90/06/21
					K		.1833300			.500	. 100	77/08/10 91/08/13
					TOT		1.025100			7.600	. 100	76/11/22 91/08/13
00650	T PO4	P04	MG/L	WATER			.3236200			1.20	.03	76/11/22 91/08/13
					K		.2934000			.50	.01	77/08/10 90/01/25
					TOT					1.20	.01	76/11/22 91/08/13
00668	PHOS MUD	DRY WGT	MG/KG-P	WATER		9	293.4100			980.0	. 8	78/04/12 85/10/16
00680	T ORG C	C	MG/L	WATER			2335.000			7000.0	1.3	83/11/09 86/10/15
00721	CYANIDE	SEDMG/KG	DRY WGT	WATER	K	ī	.0300000			.03	.03	80/10/15 80/10/15
00745	SULFIDE	TOTAL	MG/L	WATER		ī	.0000000			.00	.00	84/05/22 84/05/22
00747	SULFIDE	IN SED.	MG/KG	WATER		4	21.47500	1523.400	39.03000	80.00	1.00	82/11/10 84/05/22
					K	4	.9500000			1.70	.10	80/10/15 85/10/16
					TOT	8	11.21300			80.00	.10	80/10/15 85/10/16
00955	SILICA	DISOLVED	MG/L	WATER			1.281500			5.3	.1	76/11/22 80/10/15
					K		.6333300			1.0	. 2	77/09/14 80/11/13
					TOT		1.164800			5.3	. ī	76/11/22 80/11/13
01002	ARSENIC	AS. TOT	UG/L	WATER			9.342900			40	ī	78/11/08 87/05/21
					. K		9.866700			28	;	77/07/13 89/01/19
					TOT		9.700000			40	ī	77/07/13 89/01/19
01003	ARSENIC	SEDMG/KG	DRY WGT	WATER	,		4.201700			16.00	. 76	78/04/12 89/01/19
01019	CD MUD			WATER			1.190000		0.54,000	1.19	1.19	78/04/12 78/04/12
01020	BORON	B.DISS	UG/L	WATER			7100.000			7100	7100	78/08/09 78/08/09
	CADMIUM	CD, TOT	UG/L	WATER			8.900000	126, 2000	11.23400	41	7.00	76/12/21 89/01/19
••••		,			K		7.543500			30		76/11/22 88/10/14
					TOT		8.139000			41	.5	76/11/22 89/01/19
01028	CD MUD	DRY WGT	MG/KG-CD	BOTTOM	K	7	.4000000	00.0000	3.200200	. 40	. 40	91/08/13 91/08/13
		D.()		WATER	•	13		.2166700	4654700	1.60	.12	78/04/12 89/01/19
					K	- 5		.0758010		. 90	. 20	80/05/14 84/12/12
					TOT	18	.5974400			1.60	.12	78/04/12 89/01/19
01029	CHROMIUM	SEDMG/KG	DRY WGT	ROTTOM			12.00000	.1710300	. 4143000	12.00	12.00	91/08/13 91/08/13
	om om		J.,	WATER			10.13000	28.52400	5.340800	22.00	3.30	78/04/12 90/01/25
01034	CHROMIUM	CR. TOT	UG/L	WATER			22.23100			120	3.30	77/06/08 89/08/16
2.234		J.,, 101		****	K		13.65000			60	. 1	76/11/22 90/06/21
					TOT		18.27100			120	:1	76/11/22 90/06/21
01039	CU MUD	WET WGTM	G/KG-CH	WATER	101		493.0000	-03.3000	22.13300	493.00	493.00	78/04/12 78/04/12
	30 mab	nei neim	a. Na-eu	rir's I bol's		•	-20.0000			455.00	433.00	70/04/12 /0/04/12

PAGE:

17

/TYPA/AMENT/ESTURY

HUNWAR 33 42 45.0 118 03 34.0 2 100 YARDS NORTH OF WARNER AVENUE 06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700 HUNTINGTON HARBOUR

21CAOCFC 770210

HQ 18070201001 0008.910 OFF

	DADA	METER		MEDIUM	RMK	NUMBER	MEAN	VADTANCE	STAN DEV	88.8 V T841.884	*********	850 DATE 510 DATE
01042		CU. TOT	UG/L	WATER	Kuik		40.31600				MINIMUM	BEG DATE END DATE
01042	COFFER	<i>cu, 101</i>	UG/L	MAIER	K		19.52200			140	1	77/02/09 90/06/21
					τοτ					70	1	77/09/14 90/04/12
01042	COPPER	CEDNO (KO	DDV WOT	BOTTON	101		30.84600	738.0200	27.16/00	140	1	77/02/09 90/06/21
01043	CUPPER	SEDMG/KG	DRY WGT				26.00000			26.00	26.00	91/08/13 91/08/13
01045	7000			WATER			71.95500			600.00	3.70	78/04/12 90/01/25
01045	IRON	FE, TOT	UG/L	WATER			176.2000			330	91	83/11/09 86/10/15
01051	LEAD	PB,TOT	UG/L	WATER			16.53300			70	1	76/12/21 89/08/16
					K		19.40000			200	1	76/11/22 90/06/21
					TOT		18.17200	1049.600	32.39700	200	1	76/11/22 90/06/21
01052	LEAD	SEDMG/KG	DRY WGT				34.00000			34.00	34.00	91/08/13 91/08/13
				WATER			71.71100	4311.800	65.66400	280.00	8.60	78/04/12 90/01/25
	NICKEL	SEDMG/KG	DRY WGT		•		9.200000			9.20	9.20	91/08/13 91/08/13
	SILVER	SEDMG/KG			K	1	.2000000			. 20	.20	91/08/13 91/08/13
01092	ZINC	ZN, TOT	UG/L	WATER		78	42.61000	2304.700	48.00800	380	7	76/11/22 90/01/25
					K	27	21.81500	724.2400	26.91200	150	5	77/04/13 90/06/21
					TOT	105	37.26300	1970.900	44.39400	380	5	76/11/22 90/06/21
01093	ZINC	SEDMG/KG	DRY WGT	BOTTOM		1	120.0000			120.00	120.00	91/08/13 91/08/13
				WATER		21	89.23800	2602.800	51.01800	210.00	19.00	78/04/12 90/01/25
01102	TIN	SN, TOT	UG/L	WATER	K		1941.700		1955.900	5000	20	79/05/10 86/10/15
01103	TIN MUD	DRY WGT	MG/KG-SN	WATER		1	13.00000			13.00	13.00	79/05/10 79/05/10
					K	2	105.0000	800.0000	28.28400	125.00	85.00	84/12/12 85/10/16
					TOT		74.33300			125.00	13.00	79/05/10 85/10/16
01143	SILICON	SILICATE	UG/L SI	WATER	K		1.166700			2	. 1	83/05/11 84/12/12
01147	SELENIUM	SE.TOT	UG/L	WATER			19.00000			65	2	77/07/13 86/10/15
		,			K		18.97300			150	. ī	78/11/08 89/07/13
					TOT		18.98000			150	:ī	77/07/13 89/07/13
01148	SELENIUM	SEDMG/KG	DRY WGT	WATER		- 4		.1511600		1.03	. 29	78/04/12 81/05/20
			J		K	•	1.034600			5.00	. 05	78/11/08 85/10/16
					ToT		.9446700			5.00	. 05	78/04/12 85/10/16
01170	FE MUD	DRY WGT	MG/KG-FE	WATED		13			9960.100		9100.00	
		D.(Mar Ka-r E	WA 1 EN	K	ĭ	.4000000	33204000	3300.100	.40	. 40	83/11/09 85/10/16
					TOT	i		16005+05	13032.00		. 40	89/07/13 89/07/13
32730	PHENOLS	TOTAL	UG/L	WATER	101		110.0000	10902+03	13032.00			83/11/09 89/07/13
02/30	FILTIOLS	IOIAL	uu/ L	MAILK	K			211 1100	17 62000	110	110	77/07/13 77/07/13
					TOT		30.00000			50	10	78/04/12 82/11/10
34202	ACNAPTHY	SEDITO /PO	DRY WGT	POTTOM			37.27300	001.8200	29.35/00	110	10	77/07/13 82/11/10
	ACNAPTHE				K		.2000000			. 200	.200	91/08/13 91/08/13
					K	Ţ	.2000000			. 200	.200	91/08/13 91/08/13
	ANTHRACE				K	1	.2000000			. 200	.200	91/08/13 91/08/13
34233	BENZBFLU	URANIMUD	UKTUG/KG	ROLIOM	K	1	.2000000			. 200	.200	91/08/13 91/08/13

PAGE:

18

/TYPA/AMBNT/ESTURY

HUNWAR

33 42 45.0 118 03 34.0 2 100 YARDS NORTH OF WARNER AVENUE

06059 CALIFORNIA ORANGE 140700

SANTA ANA RIVER BASIN HUNTINGTON HARBOUR

21CAOCFC 770210

HQ 18070201001 0008.910 OFF

	PARAM	ETER			MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV		MINIMUM	BEG DATE	
34245	BENZKFLU SI	EDUG/KG	DRY	WGT	BOTTOM	K	1	. 2000000			. 200	. 200	91/08/13	
34250	BENZAPYR SI	EDUG/KG	DRY	WGT	BOTTOM	K	1	.2000000			. 200	. 200	91/08/13	91/08/13
34257	BETA BHC SI	EDUG/KG	DRY	WGT	BOTTOM	K	1	1.000000			1.000	1.000	91/08/13	91/08/13
					WATER	K	7	10.00000	33.32700	5.772900	20.000	. 002	82/11/10	89/01/19
34259	DELTABHO		TOTU	JG/L	WATER	K	10	1.132200	9.800200	3.130500	10.000	.002	82/11/10	89/01/19
	DELTABHC SI	EDUG/KG	DRY	WGT	BOTTOM	K	1	1.000000			1.000	1.000	91/08/13	91/08/13
					WATER	K	7	10.00000	33.32700	5.772900	20.000	.002	82/11/10	89/01/19
34323	CHRYSENE SI	EDUG/KG	DRY	WGT	BOTTOM	K K	1	.2000000			. 200	. 200	91/08/13	91/08/13
	DIETHYLP H			JG/L	WATER	K	1	1.000000			1.000	1.000	82/11/10	82/11/10
	DIETHYLP H					K	1	1.000000			1.000	1.000	82/11/10	82/11/10
	ENDSULSE				WATER	K	10	1.200300	9.654200	3.107100	10.000	.003	82/11/10	89/01/19
	ENDSULSE S	EDUG/KG	DRY	WGT	BOTTOM	K	1	1.000000			1.000	1.000	91/08/13	91/08/13
•					WATER	K K K	7	28.57200	314.2600	17.72700	50.000	.003	82/11/10	89/01/19
34356	B-ENDO S	ULFAN	TOTAL	UG/L	WATER	K	10	.6522000	2.427400	1.558000	5.000	.002	82/11/10	89/01/19
	BENDOSUL S				BOTTOM	K	1	1.000000			1.000	1.000	91/08/13	91/08/13
					WATER	K	7	12.85800	90.46800	9.511500	30.000	.002	82/11/10	89/01/19
34361	A-ENDO S	ULFAN	TOTWL	UG/L	WATER		1	.0030000			.003	.003	89/01/19	89/01/19
						K	9	1.280000	10.79400	3.285500	10.000	.010	82/11/10	88/01/21
						TOT	10	1.152300	9.758000	3.123800	10.000	.003	82/11/10	89/01/19
34364	AENDOSUL S	EDUG/KG	DRY	WGT	BOTTOM	K	1	1.000000			1.000	1.000	91/08/13	91/08/13
					WATER		ī	.0030000			.003	.003	89/01/19	89/01/19
						K	6	15.00000	70.00000	8.366600	30.000	10.000	82/11/10	88/01/21
						TOT	7	12.85800	90.46400	9.511200	30.000	.003	82/11/10	89/01/19
34369	ENDRINAL S	EDUG/KG	DRY	WGT	BOTTOM	K	1	1.000000			1.000	1.000	91/08/13	91/08/13
	FLANTENE S		DRY	WGT	BOTTOM	K	1	.2000000			. 200	.200	91/08/13	91/08/13
	FLUORENE S		DRY	WGT	BOTTOM	K	1	.2000000			. 200	.200	91/08/13	91/08/13
	I123CDPR S				BOTTOM	K	ī	.2000000			. 200	. 200	91/08/13	91/08/13
	NAPTHALE S				BOTTOM	K	1	.2000000			. 200	.200	91/08/13	91/08/13
	PHENANTH S		DRY	WGT	BOTTOM	K	1	.2000000			. 200	.200	91/08/13	91/08/13
		EDUG/KG			BOTTOM	K	ī	.4000000			. 400	.400	91/08/13	91/08/13
	BENZAANT S				BOTTOM	K	ī	.2000000			. 200	.200	91/08/13	91/08/13
	DBAHANTH S				BOTTOM	K K K	ī	.2000000			. 200	.200	91/08/13	91/08/13
34671	PCB	1016	TOTW	UG/L	WATER	K	12	25.88600	7452.300	86.32700	300.000	.030	81/11/12	89/01/19
38260	MBAS		MG	/L	WATER		4			.5197700		.01	80/10/15	84/05/22
						K	8	.0662500	.0021697	.0465800	.10	. 01	79/05/10	86/10/15
						TOT	12	.1516700	.0909790	.3016300	1.10	. 01	79/05/10	86/10/15
39034	PERTHANE W	HL SMPL	UG/I	L	WATER	K	14	10.03600	730.7800	27.03300	100.000	.003	79/05/10	89/01/19
	SIMAZINE	MUD		/GK	WATER	K	8	763.1400	3049200	1746.200				89/01/19
	SIMAZINE W		(UG	/L)	WATER	K	11	15.14600	1008.300	31.75400	100	. 1	79/05/10	89/01/19
		_												

/TYPA/AMBNT/ESTURY

PGM=INVENT

PAGE:

19

HUNWAR

33 42 45.0 118 03 34.0 2

100 YARDS NORTH OF WARNER AVENUE 06059 CALIFORNIA ORANGE

SANTA ANA RIVER BASIN HUNTINGTON HARBOUR 140700

21CAOCFC 770210 HQ 18070201001 0008.910 OFF

20076		METER	DDV WOT	MEDIUM	RMK K	NUMBER	MEAN 1.000000	VARIANCE	STAN DEV	MAXIMUM 1.000	MINIMUM 1.000	BEG DATE END DATE 91/08/13 91/08/13
39076	ALPHABHC	SEDUG/KG	DRY WGT	WATER	ĸ		10.00000	30 00000	5.477200	20.000	5.000	82/11/10 88/01/21
10505	P,P'DDT	SEDUG/KG	DRY WGT		k	-	1.000000	00.0000	3.4//200	1.00	1.00	91/08/13 91/08/13
		SEDUG/KG		BOTTOM	Ř		1.000000			1.00	1.00	91/08/13 91/08/13
		SEDUG/KG	DRY WGT		· K		1.000000			1.00	1.00	91/08/13 91/08/13
	ALDRIN	000000	TOT UG/L			ī	.0040000			.004	.004	89/01/19 89/01/19
					K	19	.7136800	1.298100	1.139300	5.000	. 005	77/07/13 88/01/21
					TOT		.6782000	1.254900	1.120200	5.000	. 004	77/07/13 89/01/19
39333	ALDRIN	SEDUG/KG	DRY WGT		K		1.000000			1.00	1.00	91/08/13 91/08/13
				WATER			.0040000			. 004	.004	89/01/19 89/01/19
					K		11.19200			20.00	.50	78/11/08 88/01/21
					TOT		10.39300			20.00	. 004	78/11/08 89/01/19
	ALPHABHC		TOTUG/L		K		1.140200			10.000	. 002	83/11/09 89/01/19
	BETA BHC		TOTUG/L		K		1.146900			10.000	.002	83/11/09 89/01/19
	GAMMABHC		TOT.UG/L		K		.6035700	. 2259500	.4/53400	1.000	.050	77/07/13 84/12/12
39343	GBHC-MUD	LINDANE	DRYUG/KG		K	_	1.000000	FA A05A0	7 070000	1.00	1.00 .50	91/08/13 91/08/13 78/11/08 84/12/12
	0111 00 1115	TECH! 644FT	TOT 110 /1	WATER	K K K		12.55000 5.535500			20.00	.010	77/07/13 89/01/19
	CHLRDANE				K		10.00000	494.5600	22.23900	10.00	10.00	91/08/13 91/08/13
39321	CDANEDRY	IECHEME	MUDUG/KG	WATER	K		69.00000			69.00	69.00	80/05/14 80/05/14
				MAILK	K		37.34700	1524 400	30 04400	100.00	.01	78/11/08 89/01/19
					τοτ		39.60800			100.00	.01	78/11/08 89/01/19
39360	aaa	WHL SMPL	UG/L	WATER	K		.9311000			10.000	. 002	77/07/13 89/01/19
39363	dad	MUD	UG/KG	WATER	k		11.10700			20.00	.002	78/11/08 89/01/19
39365	DDE	WHL SMPL	UG/L	WATER	,,		19.50900			39.000	.017	86/10/15 89/01/19
03000	DOL	W.12 OM 2	00, n	,,,,, E.,	K		.4788900			1.000	.010	77/07/13 88/01/21
					TOT		2.381900			39.000	.010	77/07/13 89/01/19
39368	DDE	MUD	UG/KG	WATER			30.00000			30.00	30.00	84/05/22 84/05/22
					K	13	11.19400	49.69900	7.049800	20.00	.02	78/11/08 89/01/19
					TOT	14	12.53700	71.13900	8.434400	30.00	.02	78/11/08 89/01/19
39370	DDT	WHL SMPL	UG/L	WATER			140.0000			140.000	140.000	86/10/15 86/10/15
					K				. 4656200		.002	77/07/13 89/01/19
					TOT		7.447100			140.000	.002	77/07/13 89/01/19
39373	DDT	MUD	UG/KG	WATER	K		16.10700			30.00	.002	78/11/08 89/01/19
	DIELDRIN		TOTUG/L		K		.6811000		1.118600	5.000	.002	77/07/13 89/01/19
	DIELDRIN		DISUG/L		K	1				20.000	20.000	80/05/14 80/05/14
39383	DIELDRIN	SEDUG/KG	DRY WGT		K		1.000000			1.00	1.00	91/08/13 91/08/13
				WATER	K K K				6.782600		.002	78/11/08 89/01/19
39390	ENDRIN		TOT UG/L	WATER	K	20	.9411500	4.756100	2.180800	10.000	.003	77/07/13 89/01/19

PAGE:

20

/TYPA/AMBNT/ESTURY

HUNWAR
33 42 45.0 118 03 34.0 2
100 YARDS NORTH OF WARNER AVENUE
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
HUNTINGTON HARBOUR

21CAOCFC 770210 0999 FEET DEPTH

HQ 18070201001 0008.910 OFF

	PARAM			MEDIUM	RMK	NUMBER		VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
39393	ENDRIN S	SEDUG/KG	DRY WGT		K		2.000000			2.00	2.00	91/08/13 91/08/13
				WATER	K			76.55000		30.00	.003	78/11/08 89/01/19
	TOXAPHEN		TOTUG/L		K			12453.00	111.5900	500.000	.050	77/07/13 89/01/19
39403	TOXAPHEN S	SEDUG/KG	DRY WGT		K		200.0000			200.00	200.00	91/08/13 91/08/13
				WATER	K			36977.00		500.00	. 05	78/11/08 89/01/19
	HEPTCHLR		TOTUG/L		K			1.251100	1.118500	5.000	.003	77/07/13 89/01/19
39413	HEPTCHLR S	SEDUG/KG	DRY WGT		K		1.000000			1.00	1.00	91/08/13 91/08/13
				WATER	K			46.00200		20.00	.003	78/11/08 89/01/19
	HPCHLREP		TOTUG/L		K			4.774300	2.185000	10.000	.002	77/07/13 89/01/19
39423	HPCHLREP S	SEDUG/KG	DRY WGT		K		1.000000			1.00	1.00	91/08/13 91/08/13
				WATER	K			46.00400		20.00	.002	78/11/08 89/01/19
	MTHXYCLR W		UG/L	WATER	K			580.1000	24.08500	100.000	.010	79/05/10 89/01/19
39481	MTHXYCLR M	AUD DRY	UG/KG	BOTTOM	K		7.000000			7.00	7.00	91/08/13 91/08/13
				WATER	K			1589.000		100.00	. 01	79/10/10 89/01/19
	PCB-1221		TOTUG/L		K			7452.300	86.32700	300.000	.030	81/11/12 89/01/19
39491	PCB-1221 S	SEDUG/KG	DRY WGT		K		10.00000			10.00	10.00	91/08/13 91/08/13
				WATER	K			20246.00		300.00	.03	81/11/12 89/01/19
	PCB-1232		TOTUG/L		K			4472.400	66.87600	300.000	.030	77/07/13 89/01/19
39495	PCB-1232 S	SEDUG/KG	DRY WGT		K		10.00000			10.00	10.00	91/08/13 91/08/13
				WATER	K			17748.00		300.00	.03	78/11/08 89/01/19
	PCB-1242		TOTUG/L		K			4472.400	66.87600	300.000	.030	77/07/13 89/01/19
39499	PCB-1242 S	SEDUG/KG	DRY WGT		K		10.00000			10.00	10.00	91/08/13 91/08/13
				WATER	K			17748.00		300.00	.03	78/11/08 89/01/19
	PCB-1248		TOTUG/L		K			7452.300	86.32700	300.000	.030	81/11/12 89/01/19
39503	PCB-1248 S	SEDUG/KG	DRY WGT		K	_	10.00000			10.00	10.00	91/08/13 91/08/13
				WATER	K			17664.00		300.00	.03	84/05/22 89/01/19
	PCB-1254		TOTUG/L		K			4472.400	66.87600	300.000	.030	77/07/13 89/01/19
39507	PCB-1254 S	SEDUG/KG	DRY WGT		K		10.00000			10.00	10.00	91/08/13 91/08/13
				WATER	K			17748.00		300.00	.03	78/11/08 89/01/19
	PCB-1260		TOTUG/L		K			4472.400	66.87600	300.000	.030	77/07/13 89/01/19
39511	PCB-1260 S	SEDUG/KG	DRY WGT		K		10.00000			10.00	10.00	91/08/13 91/08/13
				WATER	K			17748.00	133.2200	300.00	.03	78/11/08 89/01/19
39514	PCB-1016 9	SEDUG/KG	DRY WGT		K		10.00000			10.00	10.00	91/08/13 91/08/13
20000	****			WATER	K			20246.00		300.00	.03	81/11/12 89/01/19
		WHL SMPL	UG/L	WATER	K	13		750.1200	27.38800	100.000	.050	79/05/10 89/01/19
39531	MALATHN	MUD	UG/KG	BOTTOM	Ķ	. 1	30.00000	0.4.0.00		30.00	30.00	91/08/13 91/08/13
	D. D. 1			WATER	K			94890.00			.05	79/05/10 89/01/19
		WHL SMPL	UG/L	WATER	K			1384.700	37.21100	100.000	.050	79/05/10 89/01/19
59541	PARATHN	MUD	UG/KG	BOTTOM	K	1	30.00000			30.00	30.00	91/08/13 91/08/13

/TYPA/AMBNT/ESTURY

PGM=INVENT

PAGE:

21

HUNWAR 33 42 45.0 118 03 34.0 2

100 YARDS NORTH OF WARNER AVENUE 06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700

HUNTINGTON HARBOUR

21CAOCFC 770210 0999 FEET DEPTH HQ 18070201001 0008.910 OFF

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
39541	PARATHN	MUD	UG/KG	WATER	K	10	1029.500	9935900	3152.100	10000.00	.05	79/05/10 89/01/19
39730	2,4-D	WHL SMPL	UG/L	WATER	K	12	7.337500	198.2200	14.07900	50.000	. 050	81/11/12 89/01/19
39731	2,4-D	MUD	UG/KG	BOTTOM	K	1	5000.000	_		5000.00	5000.00	91/08/13 91/08/13
				WATER	· K	8	113.7600	25940.00	161.0600	500.00	.05	81/11/12 89/01/19
39760	SILVEX	WHL SMPL	UG/L	WATER	K	12	11.07600	802.7500	28.33300	100.000	.010	81/11/12 89/01/19
39761	SILVEX	MUD	UG/KG	BOTTOM	K	1	2000.000			2000.00	2000.00	91/08/13 91/08/13
				WATER	K	8	48.75100	2012.400	44.85900	100.00	.01	81/11/12 89/01/19
39780	DICOFOL	WHL SMPL	UG/L	WATER	K	7	.6142900	.2314300	.4810700	1.000	. 100	77/07/13 80/10/15
39782	LINDANE	WHL SMPL	UG/L	WATER		1	.0050000			.005	. 005	89/01/19 89/01/19
					K	16	1.145000	5.802900	2.408900	10.000	.010	79/05/10 88/01/21
					TOT		1.077900			10.000	. 005	79/05/10 89/01/19
39783	LINDANE	MUD DRY	UG/KG	WATER		1	.0050000			.005	. 005	89/01/19 89/01/19
					K	12	12.91700	29.35600	5.418100	20.00	5.00	79/05/10 88/01/21
					TOT	13	11.92400	39.73400	6.303500	20.00	. 005	79/05/10 89/01/19
71850	NITRATE	TOT-NO3	MG/L	WATER			2.606500			21.0	. 1	76/11/22 90/04/12
					K		.3838100			1.0	. 1	77/08/10 91/08/13
					TOT	105	1.717400			21.0	. 1	76/11/22 91/08/13
71885	IRON	FE	UG/L	WATER		3			2315.700	4200.00	140.00	77/07/13 86/10/15
71900	MERCURY	HG, TOTAL	UG/L	WATER		7		116.4400		30.0	. 4	77/07/13 83/05/11
					K	14		.2022000		2.0	. 3	78/11/08 89/07/13
					TOT	21		46.68400		30.0	. 3	77/07/13 89/07/13
71921	MERCURY	SEDMG/KG	DRY WGT	WATER		12		.0146250		. 4	. 01	78/04/12 85/10/16
					K	. 7		.0313480		. 4	.02	80/05/14 89/07/13
					TOT	19		.0224590	.1498600	. 4	.01	78/04/12 89/07/13
74041	WQF	SAMPLE	UPDATED			1	920110.0			920109	920109	91/08/13 91/08/13
				WATER		175	889700.0	1459E+05	12082.00	920109	860715	85/08/13 91/08/13
	PCB-1262		WT UG/KG		K	1	10.00000			10.000	10.000	91/08/13 91/08/13
		PERYLENE			K	1	.2000000			.20	. 20	91/08/13 91/08/13
80101		DRY WGT	MG/KG	WATER		3		22305000	4722.800		560.0	83/11/09 85/10/16
81886	PERTHANE	SED DRY	WGTUG/KG		K	1	7000.000			7000.000		91/08/13 91/08/13
				WATER	K	5			121.1600		.003	82/11/10 89/01/19
82007	* SAND	IN SED	DRY WGT	WATER		7			28.86800	92.00	11.20	82/06/03 87/05/21
	SEDIMENT		SILT	WATER		7		760.3200		79.60	1.00	82/06/03 87/05/21
82009	SEDIMENT	PARTSIZE	CLAY	WATER		7	6.171400	21.67200	4.655400	13.00	.00	82/06/03 87/05/21

PAGE:

22

/TYPA/AMBNT/STREAM

RAINSQ
33 45 03.0 117 56 30.0 2
AT MAINTENANCE ENCLOSURE
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
MILE SQUARE PARK RAIN STA.
21CAOCFC 770817 18070201
0999 FEET DEPTH

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE	END DATE
00045	PRECIP	TOT DAY	IN	WATER		99	.5413100	.3035000	.5509100	3.27	.04	74/12/03	78/04/15
00076	TURB		HACH FTU			1	6.900000			6.9	6.9	79/03/27	79/03/27
	CNDUCTVY	AT 25C		WATER		26	37.01900	1612.700	40.15800	150	4	76/11/11	79/03/27
00403	PH	LAB	su	WATER		26	5.571200	.8928300	.9449000	7.7	4.0	76/11/11	79/03/27
	RESIDUE	DISS-105		WATER				278.8600		63	• 1	76/11/11	79/03/27
00010		0100 100	·		K	1	1.000000			1	1	79/03/19	79/03/19
					TOT	18	13.87200	272.7700	16.51600	63	1	76/11/11	79/03/27
00610	NH3+NH4-	N TOTAL	MG/L	WATER		18	.5944500	.8279100	.9098900	3.300	. 100	76/11/11	79/03/19
00010					K	3	.1000000			.100	. 100	78/02/06	79/03/27
					TOT	21	.5238100	.7351500	.8574100	3.300	. 100	76/11/11	79/03/27
00625	TOT KJEL	N	MG/L	WATER	,				1.772700	6.700		76/11/11	79/03/27
00020	101 1000	•••			K	ĩ	.1000000			.100	. 100	79/03/19	79/03/19
					TOT	19		3.191500	1.786500	6.700	. 100	76/11/11	79/03/27
00650	T PO4	P04	MG/L	WATER	, , ,	19		.0480340		.98	.15	76/11/11	79/03/19
00000	1 104	, 04			K	6	.0450000	.0002700	.0164320	.06	.03	78/02/06	79/03/27
					TOT	25		.0541240		.98	.03	76/11/11	79/03/27
00945	SULFATE	SO4-TOT	MG/L	WATER			6.369200	206.8900	14.38400	54	1	77/01/05	79/02/20
00540	00L; A1L	004-101	L		K	و			.4342900	1	. 1	76/11/11	79/03/27
					TOT	22			11.24300	54	. 1	76/11/11	79/03/27
01051	LEAD	PB,TOT	ug/L	WATER					26.37400	100	5	76/11/11	
01001	LLAU	,			K				6.928200	20	2	78/01/03	
					TOT	26	27.61500	614.3300	24.78600			76/11/11	79/03/27
01055	MANGNESE	MN	UG/L	WATER	K		10.00000			10.0		78/04/06	78/04/06
01092		ZN, TOT	űG/L	WATER	• • • • • • • • • • • • • • • • • • • •			893.0400	29.88400			77/01/05	79/03/27
01031		2,11,101			K		10.00000			10	10	79/03/19	79/03/19
					TOT			883.9300	29.73100		6	77/01/05	79/03/27
71850	NITRATE	TOT-NO3	MG/L	WATER					2.773600	9.7	. 3	77/01/05	79/03/27
, 1000	114 11551	, 5 : 1100	***************************************		K				.2582000	. 9		76/11/11	79/03/19
	_				тот				2.630100		. 3	76/11/11	79/03/27
81798	PRECIP/	COMPOSIT	INCH/COM	WATER			.5300000			.53	. 53	76/11/11	76/11/11
01/30	PICOTE	00m, 001 i	2,10.17 0011	****		•							

PAGE:

23

/TYPA/AMBNT/STREAM

	DADA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXTMIM	MINIMUM	BEG DATE END DATE
00010	WATER	TEMP	CENT	WATER	K III C			19.72200		28.0	7.0	73/04/06 92/02/12
00011	WATER	TEMP	FAHN	WATER	\$			64.08000		82.4	44.6	73/04/06 92/02/12
		FLOW	CFS	WATER	•			5812.300		466	.08	73/04/06 78/03/01
00060	STREAM	LFOM	UFS	MAICK	L	/ 1	.0000000	3012.300	70.23000	400	.00	77/09/13 77/09/13
					тот	7.		5749.200	75 02200	466	ŏ	73/04/06 78/03/01
		~. ~	THOT OF	WATES	101			22267.00		1300	. 08	73/07/09 92/02/12
00061	STREAM	FLOW,	INST-CFS	WAIER	_					150		73/04/06 87/03/10
					_J			1276.700			0	
					TOT			18297.00		1300	ŭ	73/04/06 92/02/12
00076	TURB	TRBIDMTR	HACH FTU	WATER				5250.400	72.45900	860.0	. 2	73/05/08 92/03/27
					K		.1000000		70 00100	.1	• 1	90/05/22 90/05/22
					TOT			5224.600		860.0	1	73/05/08 92/03/27
00093	SOLIDS	FLOAT	MG/L	WATER				387770.0		1920.0	400.0	81/09/14 82/09/20
	CNDUCTVY		MICROMHO					10475000		36000	_8	77/01/25 92/02/12
00095	CNDUCTVY	AT 25C	MICROMHO				1280.200		2485.800	24000	78	73/04/06 92/03/27
00116	INTNSVE	SURVEY	IDENT	WATER				.0000000		730601	730601	73/11/17 92/03/27
00300	DO		MG/L	WATER				8.640500		15.0	2.0	74/10/08 92/02/12
					L			.0000000		15.0	15.0	76/11/09 84/05/15
					TO T	168	9.106400	9.285800	3.047300	15.0	2.0	74/10/08 92/02/12
00301	D0	SATUR	PERCENT	WATER	\$	166	93.55700	1006.400	31.72400	176.5	21.3	74/10/08 92/02/12
00310	BOD	5 DAY	MG/L	WATER		6	8.300000	44.14000	6.643800	20.0	3.0	73/11/17 79/10/09
00335	COD	LOWLEVEL	MG/L	WATER		43	59.55800	1675.900	40.93800	227.0	11.0	75/07/01 79/10/09
00400	PH		su	WATER		136	7.802100	.4073500	.6382400	10.10	5.60	76/06/02 92/02/12
00403	PH	LAB	su	WATER		200	7.789800	.2468600	.4968500	8.8	6.4	73/04/06 92/03/27
00405	CO2		MG/L	WATER		4	4.750000	18.05700	4.249300	10.0	1.1	77/07/12 90/05/22
	HCO3 ION	HCO3	MG/L	WATER		6	301.1700	10452.00	102.2400	500	221	73/05/08 86/10/13
	CO3 ION	CO3	MG/L	WATER		3	4.466700	17.85300	4.225300	8	0	73/05/08 77/07/12
	RESIDUE	DISS-105		WATER			280.0000			280	280	90/05/22 90/05/22
	RESIDUE	TOT NELT	MG/L	WATER				229620.0	479.1900	5630	. 2	73/07/09 92/03/26
00000					K			.8000100		5	ī	79/05/22 92/03/27
					TOT			207640.0			. 2	73/07/09 92/03/27
00535	RESIDUE	VOL NFLT	MG/L	WATER				8827.800		950	. 2	74/12/04 92/03/26
00000	KESIBUE	40E 141E1	11147 =	WO 1 = 15	K			3.341000			. 1	75/02/03 92/03/27
					TOT			7083.500		-	. ī	74/12/04 92/03/27
00550	OIL-GRSE	TOT CVIT	MG/L	WATER	101			5144.600			, 6	74/10/29 85/10/15
00530	OTL-GKSE	IUI-SALI	md/L	MAILK	K			4.000000			1.0	75/01/06 86/10/14
					TOT			4505.400			. 6	74/10/29 86/10/14
00610	NU 2 AMITA	N TOTAL	MC /I	WATED	101	119		.3912900			.040	73/06/04 92/03/27
00010	NH3+NH4-	NIUIAL	MG/L	WATER	v			.0042885		.500	.050	73/04/06 92/03/23
					K TOT			.2609200			.040	73/04/06 92/03/23
					101	201	.3134200	. 2003200	. 5100100	7.900	.040	70.04700 32703727

PAGE:

24

/TYPA/AMBNT/STREAM

		METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE E	END DATE
	UN-IONZD	NH3-N	MG/L	WATER		135	.0084066	.0002325	.0152480	. 093	.000010	73/04/06 9	
	UN-IONZD	SHN-EHN	MG/L	WATER	\$	135	.0102210	.0003437	.0185400	.113	.00001	73/04/06 9	91/09/12
00620	N-EON	TOTAL	MG/L	WATER	K	1	.2000000			. 200	. 200	90/05/22 9	
00625	TOT KJEL	N	MG/L	WATER		194	2.235800	5.331600	2.309000	28.000	. 100	73/05/08 9	
					K	. 6	.3833300	.0336670	.1834900	.500	. 100	79/08/14 9	
					TOT		2.180200			28.000	. 100	73/05/08 9	
00650	T PO4	P04	MG/L	WATER			.7726300			6.61	.01	73/04/06 9	
					K	15	.3220000	.0514460	.2268200	.50	.01	73/10/02 9	
					TOT	201	.7390000	.7248600	.8513900	6.61	.01	73/04/06 9	
	PHOS MUD	DRY WGT	MG/KG-P	WATER		8	209.0000			760.0	. 8	80/10/14 8	
	T ORG C	C	MG/L	WATER		4	13.61300			20.5	10.0	83/11/08 8	
	CYANIDE	SEDMG/KG	DRY WGT	WATER	K	2				.03	.03	80/10/14 8	
00747	SULFIDE	IN SED.	MG/KG	WATER		1	31.00000			31.00	31.00	82/06/02 8	
					K	6	.7833300	.2656700	.5154300	1.40	.10	80/10/14 8	
					TOT	7	5.100000	130.6600	11.43100	31.00	. 10	80/10/14 8	
	TOT HARD	CACO3	MG/L	WATER		16	384.6900			4000	30	73/06/04 9	
	CALCIUM	CA, DISS	MG/L	WATER		6	91.50000			130.0	34.0	73/05/08 8	
	MGNSIUM	MG,DISS	MG/L	WATER		7	37.18600	243.3400	15.59900	47.2	3.1	73/05/08 9	
	SODIUM	NA,DISS	MG/L	WATER		7	154.1400	2482.500	49.82500	195.00	63.00	73/05/08 9	
	PTSSIUM	K,DISS	MG/L	WATER		7	12.85700	59.83300	7.735200	25.00	1.40	73/05/08 9	
	CHLORIDE	TOTAL	MG/L	WATER		7	111.4300	2253.600	47.47300	155	13	73/05/08 9	
	SULFATE	SO4-TOT	MG/L	WATER		7	264.0000	8739.700	93.48600	359	88	73/05/08 9	
	FLUORIDE	F,DISS	MG/L	WATER		7	1.131400	.2310500	.4806800	1.70	. 48	73/05/08 9	90/05/22
00955	SILICA	DISOLVED	MG/L	WATER		119	7.513000	22.70200	4.764700	22.0	. 8	73/04/06 9	90/05/22
					K	2	.4000000	.0200000	.1414200	. 5	. 3	77/04/12 7	79/05/09
					TOT	121	7.395400	23.15300	4.811800	22.0	. 3	73/04/06 9	90/05/22
01002	ARSENIC	AS, TOT	UG/L	WATER		8	6.500000			20	2	76/04/06 8	
					K	12	7.916700	47.53800	6.894800	20	1	75/01/06 8	37/05/20
					TOT	20	7.350000	41.08200	6.409500	20	1	75/01/06 8	37/05/20
	ARSENIC	SEDMG/KG	DRY WGT			13	3.923900			20.00	. 80	78/11/07 8	39/01/18
01020	BORON	B,DISS	UG/L	WATER		7	421.4300	10548.00	102.7000	580	250	73/05/08 9	90/05/22
01027	CADMIUM	CD, TOT	UG/L	WATER		40	7.417500	264.9200	16.27600	105	. 7	73/07/16 8	35/10/14
					K	23	6.108700	48.54500	6.967400	20	. 5	77/07/12 9	92/03/27
					TOT	63	6.939700	184.2700	13.57500	105	. 5	73/07/16 9	92/03/27
01028	CD MUD	DRY WGT	MG/KG-CD	WATER		9	.3435600	.0489440	.2212300	. 80	.13	78/11/07 8	39/01/18
					K	6		.0220270		. 60	. 23	80/05/13 8	36/10/14
					TO T	15				.80	.13	78/11/07 8	39/01/18
	CHROMIUM		DRY WGT				7.366700			18.00	1.70	78/11/07 8	39/01/18
01034	CHROMIUM	CR, TOT	UG/L	WATER		46	13.87000	243.9800	15.62000	67	2	75/01/06 9	32/02/09

PAGE:

25

/TYPA/AMBNT/STREAM

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV		MINIMUM	BEG DATE END DATE
01034	CHROMIUM		UG/L	WATER	K	49	8.295900	82.29100	9.071400	50	1	76/12/07 92/03/27
	CHROMIUM		UG/L	WATER	TOT	95	10.99500	166.6600	12.91000	67	1	75/01/06 92/03/27
		cu, tot	UG/L	WATER	,	111	18.89600	223.8700	14.96200	103	2	73/07/16 92/03/27
01042	OUT I EK	ou,			K		11.33300			20	3	77/03/31 92/03/23
					TOT		17.69300			103	2	73/07/16 92/03/27
01043	COPPER	SEDMG/KG	DRY WGT	WATED			148.5000			2000.00	2.20	78/11/07 89/01/18
01045		FE. TOT	UG/L	WATER			990.0000			1480	500	83/11/07 85/10/14
01051		PB. TOT	UG/L	WATER			87.47200			800	3	73/11/05 92/03/27
01031	LEAD	PB, 101	00/ L	MAILER	K		14.67500			70	2	73/07/16 92/03/23
					TOT		69.60700			800	2	73/07/16 92/03/27
01052	LEAD	SEDMG/KG	DRY WGT	WATED	,		25.43600			42.00	4.30	78/11/07 86/10/14
01052	MN MUD		MG/KG-MN				42.00000	107.7000	12.0000	42.00	42.00	79/05/09 79/05/09
			UG/L	WATER			10.00000			10	10	92/02/09 92/02/09
01067	NICKEL	NI, TOTAL	uu/L	MAICK	K			225.0000	15.00000		ĩo	92/02/09 92/03/27
					το τ				14.49100	40	10	92/02/09 92/03/27
01077	CTLVED	AC TOT	110.71	WATER	101		4.000000	210.0000	14.43100	4.0	4.0	92/02/09 92/02/09
010//	SILVER	AG, TOT	UG/L	MAILK	K		4.666700	16 00000	4 000000	10.0	2.0	92/02/09 92/03/27
					7 0T				3.777100	10.0	2.0	92/02/09 92/03/27
			110.71	WATED	101				84.13100	580	2.0	75/01/06 92/03/26
01092	ZING	ZN, TOT	UG/L	WATER	κ				8.046600	25	2	73/07/16 92/03/27
					TOT				81.69200		2	73/07/16 92/03/27
		05040 440	SSV WAT	****	101				14.81000		10.80	78/11/07 89/01/18
01093		SEDMG/KG	DRY WGT		K		.1000000	219.5500	14.01000	.1	.1	83/05/09 83/05/09
	SILICON		UG/L SI		K			20 10700	5.494300		• • •	75/01/06 81/05/19
01147	SELENIUM	SE, TOT	ug/L	WATER	ı,				7.412900		•	77/07/12 87/05/20
					K				6.974700		•	75/01/06 87/05/20
					TOT						. 07	80/05/13 81/05/19
01148	SELENIUM	SEDMG/KG	DRY WGT	WAIER					.0289910		.05	78/11/07 86/10/14
					K				.4620000		.05	78/11/07 86/10/14
			==		TOT	13			.4504200		3000.00	83/11/08 86/10/14
	FE MUD	DRY WGT	MG/KG-FE			3			458.2600		240	74/12/04 82/09/21
31507	TOT COLI	MPN COMP	/100ML	WATER	• •			1/8/E+U8	422760.0			
					K	1			000000	200	200	80/04/08 80/04/08
						4			.0000000		2400000	78/11/22 81/10/02
					TOT				599330.0			74/12/04 82/09/21
	FEC COLI		/100ML	WATER		3	1643.300	1126600	1061.400			75/10/07 77/10/11
	FECSTREP		/100ML	WATER		1	2300.000			2300		75/10/07 75/10/07
	PHENOLS	TOTAL	UG/L	WATER	K			317.4300	17.81700			77/01/25 82/11/09
	INVALID	PAR	NUMBER	WATER			.2500000			. 2500000		78/04/11 78/04/11
34257	BETA BHC	SEDUG/KG	DRY WGT	WATER	K	5	31.00000	1530.000	39.11500	100.000	5.000	82/11/09 86/10/14

PAGE:

26

/TYPA/AMBNT/STREAM

	PARAMETE	ER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXTMIM	MINIMUM	BEG DATE END DA	TE
34259	DELTABHO		TOTUG/L	WATER	K		2.032000	19.84100	4.454300	10.000	.010	82/11/09 86/10/	
34262	DELTABHC SEDU	JG/KG	DRY WGT	WATER	K		31.00000			100.000	5.000	82/11/09 86/10/	
34337	DIETHYLP HTHA	ALATE D	DISSUG/L	WATER			10.00000			10.000	10.000	82/11/09 82/11/	
34338	DIETHYLP HTHA	ALATE S	SUSPUG/L	WATER	K K		10.00000			10.000	10.000	82/11/09 82/11/0	
34351	ENDSULSF		TOTUG/L	WATER	K	5	2.070000	19.65200	4.433100	10.000	.050	82/11/09 86/10/	
34354	ENDSULSF SEDU	JG/KG	DRY WGT	WATER	K	5	84.00000			300.000	10.000	82/11/09 86/10/	
34356	B-ENDO SULF	AN 1	TOTWUG/L	WATER	K	5	2.032000			10.000	.010	82/11/09 86/10/	
34359	BENDOSUL SEDU	JG/KG	DRY WGT	WATER	K	5	31.00000			100.000	5.000	82/11/09 86/10/	
	A-ENDO SULF		TOTWUG/L	WATER	K	5	2.032000	19.84100	4.454300	10.000	.010	82/11/09 86/10/	
34364	AENDOSUL SEDU	JG/KG	DRY WGT	WATER	K	5	31.00000	1530.000	39.11500	100.000	5.000	82/11/09 86/10/	
34671		016 T	TOTWUG/L	WATER	K	7	.9000000	.0700000	.2645800	1.000	.300	81/11/10 86/10/	
38260	MBAS		MG/L	WATER		9	.1688900	.0205610	.1433900	. 43	. 04	74/10/08 85/10/	
					K	8			.0465800	. 10	.01	74/12/04 86/10/	
					TOT	17	.1205900	.0140180	.1184000	. 43	.01	74/10/08 86/10/	14
	PERTHANE WHL		UG/L	WATER	K		1.850000			10.000	.500	79/05/09 86/10/	14
	SIMAZINE MU		UG/GK	WATER	K	. 6	19.16700	264.1700	16.25300	50.00	5.00	79/05/09 86/10/	14
	SIMAZINE WH.W		(UG/L)	WATER	K	6		.0416670		1	. 5	79/05/09 86/10/	14
	ALPHABHC SEDU		DRY WGT		K	4		2075.000		100.000	5.000	83/11/08 86/10/	14
	ALDRIN		TOT UG/L		K K		.5562900			1.000	.002	75/07/01 86/10/	14
		JG/KG	DRY WGT		K	13	19.65400			100.00	.50	78/11/07 86/10/	
	ALPHABHC		TOTUG/L		K	4		.0005062		.050	.005	83/11/08 86/10/	14
	BETA BHC		TOTUG/L		K	4		.0004000		.050	.010	83/11/08 86/10/	14
	GAMMABHC LIND		TOT.UG/L		K	14		.2294700		1.000	.010	75/07/01 84/05/	15
	GBHC-MUD LIND		DRYUG/KG		K		13.68200	59.11400	7.688600	20.00	.50	78/11/07 84/05/	15
		SUES		WATER	K		1.000000			1.000	1.000	79/05/09 79/05/	
	CHLRDANE TECH				K		.6062400			1.000	. 006	75/07/01 86/10/	
			MUDUG/KG		K		62.73100			500.00	.50	78/11/07 86/10/	
39360		SMPL	UG/L	WATER	K		.5289400			1.000	.003	75/07/01 86/10/	14
39363	DDD MU		UG/KG	WATER	K		20.03900			100.00	.50	78/11/07 86/10/	
39365		SMPL	UG/L	WATER	K	16		.2374900		1.000	.002	75/07/01 86/10/	
39368	DDE MU		UG/KG	WATER	K		20.03900			100.00	.50	78/11/07 86/10/	
39370		SMPL	UG/L	WATER	K	17		.2258300		1.000	. 003	75/07/01 86/10/	
39373	DDT MU	JD	UG/KG	WATER	K		38.11500			300.00	. 50	78/11/07 86/10/	
	DIELDRIN		TOTUG/L		K		.5565900	.2357000	.4854900	1.000	.002	75/07/01 86/10/	
	DIELDRIN	10.440	DISUG/L		K K		20.00000			20.000	20.000	80/05/13 80/05/	
	DIELDRIN SEDU		DRY WGT		K		20.03900			100.00	.50	78/11/07 86/10/	
	ENDRIN		TOT UG/L		K		.5656500			1.000	. 006	75/07/01 86/10/	
		JG/KG	DRY WGT		K		29.65400			200.00	. 50	78/11/07 86/10/	
37400	TOXAPHEN		TOTUG/L	WAILK	K	17	.8117700	. 1298200	. 3603500	1.000	.100	75/07/01 86/10/	14

PAGE:

27

/TYPA/AMBNT/STREAM

PARAMETER	MEDIU	M RMK NUMBEI	MEAN	VARIANCE	STAN DEV	MAXIMUM	MUMINIM	BEG DATE END DATE
39403 TOXAPHEN SEDUG/KG	DRY WGT WATER	K 1:	317.9600	732630.0	855.9400	3000.00	. 50	78/11/07 86/10/14
39410 HEPTCHLR	TOTUG/L WATER	K 1	7 .5565900	.2357000	.4854900	1.000	.002	75/07/01 86/10/14
39413 HEPTCHLR SEDUG/KG	DRY WGT WATER	K 1:	20.03900	627.5200	25.05000	100.00	. 50	78/11/07 86/10/14
39420 HPCHLREP	TOTUG/L WATER	K 1	.5565900	.2357000	.4854900	1.000	.002	75/07/01 86/10/14
39423 HPCHLREP SEDUG/KG	DRY WGT WATER			627.5200		100.00	. 50	78/11/07 86/10/14
39480 MTHXYCLR WHL SMPL	UG/L WATER	K 14	.7792900	.1360100	.3687900	1.000	.010	75/07/01 86/10/14
39481 MTHXYCLR MUD DRY	UG/KG WATER			23045.00		500.00	10.00	79/10/09 86/10/14
39488 PCB-1221	TOTUG/L WATER	K	.9000000			1.000	.300	81/11/10 86/10/14
39491 PCB-1221 SEDUG/KG	DRY WGT WATER	K	590.0000		1185.100	3000.00	20.00	81/11/10 86/10/14
39492 PCB-1232	TOTUG/L WATER	K 1	.9533300	.0326670		1.000	.300	77/01/25 86/10/14
39495 PCB-1232 SEDUG/KG	DRY WGT WATER			675100.0		3000.00	.50	78/11/07 86/10/14
39496 PCB-1242	TOTUG/L WATER			.0326670		1.000	.300	77/01/25 86/10/14
39499 PCB-1242 SEDUG/KG	DRY WGT WATER			675100.0		3000.00	.50	78/11/07 86/10/14
39500 PCB-1248	TOTUG/L WATER	K	.9000000			1.000	.300	81/11/10 86/10/14
39503 PCB-1248 SEDUG/KG	DRY WGT WATER		704.0000		1287.700	3000.00	20.00	82/06/02 86/10/14
39504 PCB-1254	TOTUG/L WATER			.0326670		1.000	.300	77/01/25 86/10/14
39507 PCB-1254 SEDUG/KG	DRY WGT WATER			675100.0		3000.00	.50	78/11/07 86/10/14
39508 PCB-1260	TOTUG/L WATER			.0326670		1.000	.300	77/01/25 86/10/14
39511 PCB-1260 SEDUG/KG	DRY WGT WATER			675100.0		3000.00	.50	78/11/07 86/10/14
39514 PCB-1016 SEDUG/KG	DRY WGT WATER		704.0000		1287.700	3000.00	20.00	81/11/10 86/10/14
39530 MALATHN WHL SMPL	UG/L WATER			7.816200		10.000	.020	75/07/01 86/10/14
39531 MALATHN MUD	UG/KG WATER			94614.00		1000.00	5.00	79/05/09 86/10/14
39540 PARATHN WHL SMPL	UG/L WATER			8.392100		10.000	.020	75/07/01 86/10/14
39541 PARATHN MUD	UG/KG WATER			94614.00		1000.00	5.00	79/05/09 86/10/14
39730 2,4-D WHL SMPL	UG/L WATER			21.56700		10.000	.500	79/05/09 86/10/14
39731 2,4-D MUD	UG/KG WATER	K		27254.00		500.00	5.00	81/11/10 86/10/14
39760 SILVEX WHL SMPL	UG/L WATER			26.84600		10.000	,100	81/11/10 86/10/14
39761 SILVEX MUD	UG/KG WATER			2107.300		100.00	1.00	81/11/10 86/10/14
39780 DICOFOL WHL SMPL	UG/L WATER	K	.5381300	.2447700	.4947400	1.000	.005	75/07/01 80/10/14
39782 LINDANE WHL SMPL	UG/L WATER			.2311700		1.000	.007	75/07/01 86/10/14
39783 LINDANE MUD DRY	UG/KG WATER			646.9700		100.00	5.00	79/05/09 86/10/14
46570 CAL HARD CA MG	MG/L WATER			6172.300		506	270	73/05/08 86/10/13
70301 DISS SOL SUM	MG/L WATER			14793.00		1100	780	73/05/08 86/10/13
71850 NITRATE TOT-NO3	MG/L WATER	18	16.31800	313.7900	17.71400	141.0	.08	73/04/06 92/03/27
				1.551800		4.4	.02	76/08/31 90/06/19
				304.2400		141.0	. 02	73/04/06 92/03/27
71885 IRON FE	UG/L WATER	- · · · · · · · · · · · · · · · · · · ·		109080.0		970.00	120.00	75/01/06 84/05/14
71900 MERCURY HG, TOTAL	UG/L WATER			22.60300		13.7	1.0	78/04/11 82/06/01
				34.15900		20.0	. 2	75/07/01 86/10/13
		•				· -	• •	,

STORET RETRIEVAL DATE 93/04/08

PGM=INVENT

PAGE:

28

/TYPA/AMBNT/STREAM

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MUMINIM	BEG DATE	END DATE
71900	MERCURY	HG, TOTAL	UG/L	WATER	TOT	17	3.964700	30.43600	5.516900	20.0	. 2	75/07/01	86/10/13
71921	MERCURY	SEDMG/KG	DRY WGT	WATER		6	.0725000	.0038179	.0617890	. 2	.01	78/11/07	82/06/02
					K	9	.1933300	.0221250	.1487500	. 5	.01	80/10/14	89/01/18
					TOT	15	.1450000	.0177610	.1332700	. 5	. 01	78/11/07	89/01/18
74041	WQF	SAMPLE	UPDATED	WATER		71	896250.0	3484E+05	18668.00	920708	860715	79/05/22	92/03/27
80101	CARBON	DRY WGT	MG/KG	WATER		3	869.3300	457220.0	676.1800	1400.0	108.0	83/11/08	86/10/14
81799	AVG.STRM	FLOW PER	COMP.CFS	WATER		13	9.765400	802.1600	28.32300	104	1	79/06/11	82/01/11
81886	PERTHANE	SED DRY	WGTUG/KG	WATER	K	6	125.0000	35430.00	188.2300	500.000	10.000	81/11/10	86/10/14
82007	X SAND	IN SED	DRY WGT	WATER		5	80.24000	1535.700	39.18800	99.00	10.20	82/06/02	85/10/15
82008	SEDIMENT	PARTSIZE	SILT	WATER		4	21.10000	1575.100	39.68700	80.60	.00	82/06/02	84/05/15
					K	1	1.000000			1.00		85/10/15	85/10/15
					TOT	5	17.08000	1262.100	35.52600	80.60	.00	82/06/02	85/10/15
82009	SEDIMENT	PARTSIZE	CLAY	WATER		4	3.350000	15.93000	3.991300	9.20	.20	82/06/02	84/05/15
					K	1	1.000000			1.00	1.00	85/10/15	85/10/15
					TOT	5	2.880000	13.05200	3.612800	9.20	.20	82/06/02	85/10/15
82028	RATIO	FEC COL	FEC STRP	WATER	\$	1	.1869600			. 2	. 2	75/10/07	75/10/07

PAGE:

29

/TYPA/AMBNT/ESTURY

HUNCIR
33 43 04.0 118 03 55.0 4
CIRCULAR BAY N/O SHARKFIN AND MARINABAY INT.
06059 CALIFORNIA ORANGE
CALIFORNIA 140700
SANTA ANA RIVER BASIN HUNTINGTON HARBOR
21CAOCFC 800927
0000 FEET DEPTH

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV		MINIMUM	BEG DATE END DATE
00010	WATER	TEMP	CENT	WATER				9.529100		26.6	12.5	79/10/10 90/05/23
00011	WATER	TEMP	FAHN	WATER	\$	306	67.37300	30.92800	5.561300	79.9	54.5	79/10/10 90/05/23
00035	WIND	VELOCITY	MPH	WATER		35	3.371400	4.299200	2.073500	10.0	. 0	82/07/07 88/06/16
00036	WIND	DIR.FROM	NORTH-0	WATER		31	205.7400	3762.800	61.34100	300	23	82/07/07 88/06/16
00065	STREAM	STAGE	FEET	WATER	•	36	2.785000	2.518700	1.587100	5.80	. 10	82/07/07 88/04/28
00067	TIDE	STAGE	CODE	WATER		35	3864.300	5640100	2374.900	7610	1010	82/07/07 88/04/28
00076	TURB	TRBIDMTR	HACH FTU	WATER		4	1.450000	5.301300	2.302500	4.9	. 2	87/05/21 90/06/21
00078	TRANSP	SECCHI	METERS	WATER		29	1.767300	.2000500	.4472700	2.50	1.00	84/08/22 88/06/16
00094		FIELD	MICROMHO			289	49234.00	11997000	3463.600	57500	28700	79/10/10 90/05/23
00095	CNDUCTVY	AT 25C	MICROMHO	WATER		4	49750.00	1582400	1258.000	51000	48000	87/05/21 90/06/21
00300	DO		MG/L	WATER		292	6.946100	2.385200	1.544400	10.7	1.7	79/10/10 90/05/23
00301	DO	SATUR	PERCENT	WATER	\$	290	74.95100	304.5100	17.45000	120.7	19.6	79/10/10 90/05/23
00400	PH	••••	su	WATER		294	7.954100	.1563600	.3954200	9.30	6.40	79/10/10 90/05/23
00403	PH	LAB	su	WATER		4	7.900000	.0801190	. 2830500	8.1	7.5	87/05/21 90/06/21
	RESIDUE	TOT NELT	MG/L	WATER		2	16.00000	18.00000	4.242600	19	13	87/05/21 90/06/21
				, <u>-</u>	K	2	5.000000	.0000000	.0000000	5	5	88/05/12 88/10/14
					TOT	4	10.50000	46.33300	6.806900	19	5	87/05/21 90/06/21
00535	RESIDUE	VOL NFLT	MG/L	WATER		2	8.500000	.5000000	.7071100	9	8	87/05/21 90/06/21
					K	2	5.000000	.0000000	.0000000	5	5	88/05/12 88/10/14
					TOT	4	6.750000	4.250000	2.061600	9	5	87/05/21 90/06/21
00610	NH3+NH4-	N TOTAL	MG/L	WATER		4	.3000000	.0266670	.1633000	.500	. 100	87/05/21 90/06/21
	TOT KJEL	N	MG/L	WATER		4	.6750000	.0291670	.1707800	.900	. 500	87/05/21 90/06/21
00650	T PO4	P04	MG/L	WATER		2	.3500000	.0049999	.0707100	.40	.30	87/05/21 90/06/21
					K	2	.5000000	.0000000	.0000000		.50	88/05/12 88/10/14
					TOT	4	.4250000	.0091667	.0957430	.50	. 30	87/05/21 90/06/21
00745	SULFIDE	TOTAL	MG/L	WATER		1	.0000000			.00	.00	84/09/26 84/09/26
	ARSENIC	AS, TOT	UG/L	WATER	K	ī	4.000000			4	4	87/05/21 87/05/21
	CADMIUM	CD, TOT	ug/L	WATER	K	ī	1.000000			1	1	88/10/14 88/10/14
			üg/L	WATER	K	ā			19.65500	40	5	87/05/21 90/06/21
	COPPER	CU, TOT	üG/L	WATER		š			37.04100		6	87/05/21 90/06/21
	00. / 2/	00,.0.			K	ĭ	20.00000			20	20	88/05/12 88/05/12
					TOT	4			32.18200		6	87/05/21 90/06/21
01051	LEAD	PB.TOT	ug/L	WATER	K	À			97.39300		2	87/05/21 90/06/21
01092		ZN, TOT	UG/L	WATER		i	30.00000	•		30	30	88/10/14 88/10/14
01051		2,1,7.07		*****	K	Ž	25.00000	50.00000	7.071100	30	20	88/05/12 90/06/21
					TOT	ā			5.773600		20	88/05/12 90/06/21
01147	SELENIUM	SE. TOT	UG/L	WATER	K	ĭ	1.000000			1	1	87/05/21 87/05/21
	NITRATE	TOT-NO3	MG/L	WATER	ĸ	ă			.1000000	. 4	. 2	87/05/21 90/06/21
74041	WQF	SAMPLE	UPDATED		••	176			10436.00		860715	85/10/16 90/06/21

PAGE:

30

/TYPA/AMBNT/LAKE

MSPLA1
33 43 06.0 117 56 22.0 2
SOUTH SIDE OF PHASE ONE LAKE
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
MILE SQUARE PARK
21CAOCFC 770210 18070201
0999 FEET DEPTH

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE	END DATE
00010	WATER	TEMP	CENT	WATER	*******		20.84600			30.2	10.0	76/11/11	
00011	WATER	TEMP	FAHN	WATER	\$		69.52200			86.4	50.0		90/04/03
00076	TURB				·		4.817000			72.0	. 4		88/07/18
00078	TRANSP	SECCHI	METERS	WATER						2.00	. 22		88/09/27
		FIELD	MICROMHO				660.1700			1800	320		90/04/03
	CNDUCTVY	AT 25C					640.8600			1050	450		88/07/18
00300	DO		MG/L	WATER			11.56600			19.2	1.3		90/04/03
					L		15.00000			15.0	15.0	76/12/14	
					TOT	214	11.91900	8.329400	2.886100	19.2	1.3		90/04/03
00301	D 0	SATUR	PERCENT	WATER	\$	211	132.2200	1241.200	35.23000	234.2	14.5	76/11/11	90/04/03
00335	COD	LOWLEVEL	MG/L	WATER		17	43.72900	700.8700	26.47400	120.0	12.0	77/06/07	79/10/24
					K	1	1.000000			1.0	1.0	78/04/18	78/04/18
					TOT	18	41.35600	761.0800	27.58800	120.0	1.0	77/06/07	79/10/24
00400	PH		su	WATER			8.304300			10.50	5.80	76/11/11	90/04/03
					J	1	7.000000			7.00	7.00	88/11/17	88/11/17
					TOT	167	8.296400	.3785300	.6152500	10.50	5.80	76/11/11	90/04/03
00403	₽H	LAB	su	WATER		70	7.927800	. 2707200	.5203100	9.4	6.7	76/11/11	88/07/18
00405	CO2		MG/L	WATER		18	8.344500	40.99800	6.403000	21.0	.0	76/11/11	86/10/16
00440	HCO3 ION	HCO3	MG/L	WATER		16	176.1900	2002.800	44.75300	287	120	76/11/11	86/10/16
00445	CO3 ION	603	MG/L	WATER		2	.0000000	.0000000	.0000000	0	0	85/11/19	86/10/16
00515	RESIDUE	DISS-105	C MG/L	WATER		1	395.0000			395	395	86/10/16	86/10/16
00530	RESIDUE	TOT NFLT	MG/L	WATER		62	22.20000	388.0100	19.69800	92	. 8	76/11/11	88/07/18
					K	4	4.000000	4.000000	2.000000	5		86/03/31	88/05/09
					TOT	66	21.09700	383.4700	19.58200	92	. 8	76/11/11	88/07/18
00535	RESIDUE	VOL NFLT	MG/L	WATER					13.99300		. 4	77/05/10	88/07/18
					K	6	2.833300	5.666700	2.380500	5	. 5	80/10/14	88/05/09
					TOT	62	13.74800	189.9800	13.78300	59	. 4	77/05/10	88/07/18
00610	NH3+NH4-	N TOTAL	MG/L	WATER		46			.3945400	2.000			88/05/09
					K	21			.1203200	. 500			88/07/18
					TOT	67			.3586600	2.000			88/07/18
00612	UN-IONZD	NH3-N	MG/L	WATER	\$	60			.0544250	. 349	.000008		86/10/16
00619	UN-IONZD	SHN-EHN	MG/L	WATER	*	60			.0661750	. 424	.000009		86/10/16
00625	TOT KJEL	N	MG/L	WATER		67			1.003200	5.800	. 150		89/06/20
					K	2			.2121300	. 500			83/08/31
					TOT	69			1.010000				89/06/20
00650	T P04	P04	MG/L	WATER		58			.2436500	1.30			88/01/25
					<u>K</u>	10			.1740000				88/07/18
					TOT	68	.2720600		.2366900				88/07/18
00668	PHOS MUD	DRY WGT	MG/KG-P	WATER		4	653.5000	499110.0	706.4800	1600.0	15.0	83/05/12	85/11/19

PAGE:

31

/TYPA/AMBNT/LAKE

MSPLA1
33 43 06.0 117 56 22.0 2
SOUTH SIDE OF PHASE ONE LAKE
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
MILE SQUARE PARK
21CAOCFC 770210 18070201
0999 FEET DEPTH

		METER		MEDIUM	RMK	NUMBER		VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
	PHOS MUD	DRY WGT	MG/KG-P	WATER	K	1	10.00000			10.0	10.0	83/11/10 83/11/10
00668	PHOS MUD	DRY WGT	MG/KG-P	WATER	TOT		524.8000			1600.0	10.0	83/05/12 85/11/19
00680	T ORG C	C	MG/L	WATER		3	8.133300	17.05300	4.129600	11.0	3.4	83/08/19 86/10/16
					K	3	3.000000	.0000000	.0000000	3.0	3.0	84/05/10 85/11/19
					TOT	6	5.566700	14.72700	3.837500	11.0	3.0	83/08/19 86/10/16
00747	SULFIDE	IN SED.	MG/KG	WATER		2	56.00000	242.0000	15.55600	67.00	45.00	83/05/12 83/11/10
					K	3	1.000000	.0000000	.0000000	1.00	1.00	83/11/07 85/11/19
					TOT	5	23.00000	968.0000	31.11300	67.00	1.00	83/05/12 85/11/19
00900	TOT HARD	CACO3	MG/L	WATER		16	213.5600	3179.900	56.39000	346	60	76/11/11 86/10/16
00915	CALCIUM	CA, DISS	MG/L	WATER		16	64.03100	418.2800	20.45200	120.0	42.0	76/11/11 86/10/16
00925	MGNSIUM	MG, DISS	MG/L	WATER		16	16.83800	7.768000	2.787100	24.5	10.0	76/11/11 86/10/16
00930	SODIUM	NA, DISS	MG/L	WATER		16	46.87500	288.1200	16.97400	106.00	21.00	76/11/11 86/10/16
00935	PTSSIUM	K, DISS	MG/L	WATER		16	4.050000	1.401400	1.183800	7.70	2.90	76/11/11 86/10/16
00940	CHLORIDE	TOTAL	MG/L	WATER		16	61.18800	449.9000	21.21100	132	49	76/11/11 86/10/16
00945	SULFATE	SO4-TOT	MG/L	WATER		16	90.03100	273.8200	16.54800	114	39	76/11/11 86/10/16
00950	FLUORIDE	F,DISS	MG/L	WATER		16	.5706300	.0640200	.2530200	1.40	. 39	76/11/11 86/10/16
00955	SILICA	DISOLVED	MG/L	WATER		44	17.11800	59.67200	7.724800	35.8	4.3	76/11/11 86/10/16
01002	ARSENIC	AS, TOT	UG/L	WATER		2	2.500000	.5000000	.7071100	3	2	80/10/14 81/05/19
01020	BORON	B, DISS	UG/L	WATER		14	244.2900	24119.00	155.3000	730	90	76/11/11 86/10/16
					K	2	55.00000	4050.000	63.64000	100	10	77/02/08 85/11/19
					TOT	16	220.6300	25353.00	159.2300	730	10	76/11/11 86/10/16
01027	CADMIUM	CD, TOT	UG/L	WATER		3	3.666700	2.333400	1.527500	5	2	77/06/07 81/05/19
					K	2	3.000000	8.000000	2.828400	5	1	77/08/09 80/10/14
					TOT	5	3.400000	3.300000	1.816600	5	1	77/06/07 81/05/19
01029	CHROMIUM	SEDMG/KG	DRY WGT	WATER		1	2.900000			2.90	2.90	83/08/19 83/08/19
01034	CHROMIUM	CR, TOT	UG/L	WATER		. 2	12.50000	112.5000	10.60700	20	5	77/06/07 81/05/19
					K	8	4.250000	1.357200	1.165000	5	2	77/08/09 88/04/11
					TOT	10	5.900000	25.65600	5.065100	20	2	77/06/07 88/04/11
01042	COPPER	cu, tot	UG/L	WATER		11	9.090900	45.89100	6.774300	24	3	76/11/11 86/10/16
					K	11	6.090900	12.69100	3.562400	12	1	77/09/13 88/04/11
					TOT	22	7.590900	30.25300	5.500300	24	1	76/11/11 88/04/11
01043	COPPER	SEDMG/KG	DRY WGT	WATER		6	7.916700	24.82200	4.982100	17.00	3.20	83/05/12 85/11/19
01051	LEAD	PB,TOT	UG/L	WATER		6	33.16700	710.5700	26.65700	80	14	77/06/07 80/10/14
					K		9.000000			24	5	77/08/09 88/04/11
					TO T	14	19.35700	452.0900	21.26300	80	5	77/06/07 88/04/11
01052		SEDMG/KG				1	2.100000			2.10	2.10	83/08/19 83/08/19
01055	MANGNESE	MN	UG/L	WATER	K	1	10.00000			10.0	10.0	77/10/11 77/10/11
01092	ZINC	ZN, TOT	UG/L	WATER		5	20.60000	466.8000	21.60600	57	6	77/06/07 88/04/11
					K	5	11.00000	72.00000	8.485300	20	2	83/08/19 88/01/25

STORET RETRIEVAL DATE 93/04/08

/TYPA/AMBNT/LAKE

PGM=INVENT

PAGE:

32

MSPLA1

33 43 06.0 117 56 22.0 2
SOUTH SIDE OF PHASE ONE LAKE
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
MILE SQUARE PARK

21CAOCFC 770210

18070201

PARAMETE	'D	MEDIUM	RMK NUM	MBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE	END DATE
01092 ZINC ZN. 7			TOT			265.0700		57	2	77/06/07	88/04/11
	G/KG DRY WGT	WATER	. • .	i	15.00000			15.00	15.00	83/08/19	83/08/19
01147 SELENIUM SE.T		WATER		i	13.00000			13	13	81/05/19	81/05/19
			K	1 2	2.000000			2	2	80/10/14	80/10/14
			TOT	2	7.500000	60.50000	7.778200	13	2	80/10/14	81/05/19
32730 PHENOLS TO1	'AL UG/L	WATER	K	ī :	50.00000			50	50	77/07/12	77/07/12
46570 CAL HARD CA		WATER		16	229.2200	3149.900	56.12400	366	166	76/11/11	86/10/16
70301 DISS SOL SU		WATER		15	407.8000	7417.700	86.12600	707	358	76/11/11	85/11/19
71850 NITRATE TOT-	NO3 MG/L	WATER		58	3.752400	8.915200	2.985800	17.0	. 2	76/11/11	88/05/09
			K	10	.7130000	1.725700	1.313700	4.4	. 1	78/05/09	88/07/18
			TOT	68	3.305400	8.992400	2.998700	17.0	. 1	76/11/11	88/07/18
71885 IRON F	E UG/L	WATER		1 (60.00000			60.00	60.00	77/10/11	77/10/11
71900 MERCURY HG.1	OTAL UG/L	WATER	K	2 :	2.000000	2.000000	1.414200	3.0	1.0	80/10/14	81/05/19
74041 WQF SAN	IPLE UPDATED	WATER		108	883540.0	1691E+05	13007.00	900412	860717	85/11/19	90/04/03
80101 CARBON DRY	WGT MG/KG	WATER		5	2436.000	2447700	1564.500	4000.0	240.0	83/11/10	86/10/16
81613 SULFIDES SEDI	MENT MG/G	WATER	K	1	.0010000			.001	.001	84/11/07	84/11/07
82007 % SAND IN S	SED DRY WGT	WATER		1	87.00000			87.00		84/05/10	
82008 SEDIMENT PART	SIZE SILT	WATER		1	8.000000			8.00	8.00	84/05/10	
82009 SEDIMENT PART	SIZE CLAY	WATER		1 !	5.000000			5.00	5.00	84/05/10	84/05/10

PAGE:

33

/TYPA/AMBNT/ESTURY

HUNCRUST
33 43 07.0 118 04 10.0 4
AT BROADWAY ST. BRIDGE
06059 CALIFORNIA ORANGE
CALIFORNIA 140700
SANTA ANA RIVER BASIN HUNTINGTON HARBOR
21CAOCFC 801101
0000 FEET DEPTH

	PARA	AMETER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAYTMIM	MINIMUM	BEG DATE	END DATE
00010	WATER	TEMP	CENT	WATER	******		19.57600			26.4	1.8	79/10/10	
00011	WATER	TEMP	FAHN	WATER	\$		67.23600				35.3	79/10/10	
00035	WIND	VELOCITY	MPH	WATER			1.283900				.0	82/07/07	
					K		2.000000			2.0	2.0	87/08/20	
					TOT	32	1.306300	2.765800	1.663100		.0	82/07/07	
00036	WIND	DIR.FROM	NORTH-0	WATER			214.5200				90	82/07/07	
00065	STREAM	STAGE	FEET	WATER			2.885300				.10	82/07/07	
00067	TIDE	STAGE	CODE	WATER	•	34	3751.200	4911500	2216.200	7510	1010	82/07/07	
00076	TURB	TRBIDMTR	HACH FTU	WATER		4	1.027500	.6771600	.8229000	2.2	. 4	88/03/24	90/06/21
00078	TRANSP	SECCHI	METERS	WATER		28	1.665400	1.666400	1.290900	8.00	1.00	84/08/22	88/06/16
					L.	2	1.700000	.0800000	.2828400	1.90	1.50	84/10/17	88/03/24
					TOT	30	1.667700	1.554300	1.246700	8.00	1.00	84/08/22	88/06/16
	CNDUCTVY		MICROMHO			214	48595.00	17259000	4154.400	57400	28200	79/10/10	90/05/23
	CNDUCTVY	AT 25C	MICROMHO			4	50250.00	248490.0	498.4900	51000	50000	88/03/24	90/06/21
00300	DO		MG/L	WATER			6.801700			11.9	3.8	79/10/10	90/05/23
00301	DO	SATUR	PERCENT	WATER	\$	203	73.49400	206.7500	14.37900	129.3	43.2	79/10/10	90/05/23
00400	PH		su	WATER		214	7.909800	.0879550	.2965700	9.10	7.10	79/10/10	
00403	PH	LAB	su	WATER			8.000000	.0066732	.0816900		7.9	88/03/24	90/06/21
00530	RESIDUE	TOT NFLT	MG/L	WATER			31.00000			31	31	90/06/21	90/06/21
					K		5.000000				5	88/03/24	
					TOT		11.50000	169.0000	13.00000		5	88/03/24	90/06/21
00535	RESIDUE	VOL NFLT	MG/L	WATER			12.00000			12		90/06/21	90/06/21
					_ K	3		.0000000					90/04/12
					TOT	4		12.25000				88/03/24	
	NH3+NH4-		MG/L	WATER		4		.0033333	.0577350			88/03/24	
	UN-IONZD	NH3-N	MG/L	WATER	\$	1	.0017154			.002	-002	90/04/12	
	UN-IONZD	NH3-NH3	MG/L	WATER	\$	1	.0020858			.002	.002		90/04/12
	TOT KJEL	N	MG/L	WATER		4		.0825010			.500	88/03/24	
00650	T P04	P04	MG/L	WATER		2		.0000000			. 30	90/04/12	
					_ K	2		.0000000				88/03/24	
					TOT	4		.0133340				88/03/24	
	CHROMIUM		UG/L	WATER	K	4		408.3300	20.20700				90/06/21
01042	COPPER	CU, TOT	UG/L	WATER		1	40.00000			40		90/06/21	
					K	3		.0000000				88/03/24	
0105:	4.540		110.41	****	TOT	4		100.0000				88/03/24	
01051		PB, TOT	UG/L	WATER	K	4	102.0000	12805.00	113.1600			88/03/24	
01092	LING	ZN, TOT	ug/L	WATER		Ţ	10.00000			10		87/05/21	
					K	4		33.33300				88/03/24	
					TOT	5	22.00000	70.00000	8.366600	30	10	87/05/21	90/06/21

STORET RETRIEVAL DATE 93/04/08

/TYPA/AMBNT/ESTURY

PGM=INVENT

PAGE:

34

HUNCRUST HUNCST 33 43 07.0 118 04 10.0 4 AT BROADWAY ST. BRIDGE 06059 CALIFORNIA

ORANGE CALIFORNIA 140700

SANTA ANA RIVER BASIN HUNTINGTON HARBOR 21CAOCFC 801101 0000 FEET DEPTH

	PAR	AMETER		MEDIU	A RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
71850	NITRATE	TOT-NO3	MG/L	WATER		1	. 3500000			. 4	4	90/04/12 90/04/12
					K	3	.3333300	.0133330	.1154700	. 4	. 2	88/03/24 90/06/21
					TOT	4	.3375000	.0089584	.0946490	. 4	. 2	88/03/24 90/06/21
74041	WQF	SAMPLE	UPDATED	WATER		121	888870.0	1166E+05	10798.00	900821	861212	86/03/20 90/06/21

PAGE:

35

/TYPA/AMBNT/ESTURY

HUNCRB
33 43 21.0 118 03 21.0 2
CHRISTIANA BAY, MIDBASIN
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
HUNTINGTON HARBOUR
21CAOCFC 770210 18070201
0999 FEET DEPTH

		AMETER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
	VSAMPLOC	DEPTH	FEET	WATER			9.500000	24.50000	4.949800	13	6	78/04/12 78/08/09
00010	WATER	TEMP	CENT	BOTTOM			21.80000			21.8	21.8	91/08/13 91/08/13
				WATER				12.57700	3.546400	28.7	1.8	76/12/21 91/08/13
00011	WATER	TEMP	FAHN	BOTTOM		1	71.24000			71.2	71.2	91/08/13 91/08/13
				WATER	*	499	67.40300	40.66300	6.376700	83.7	35.3	76/12/21 91/08/13
00035	WIND	VELOCITY	MPH	WATER		67	4.567200	8.643200	2.939900	15.0	. 0	78/12/13 91/08/13
00036	WIND	DIR.FROM	NORTH-0	WATER		62	222.4200	2775.200	52.68000	315	0	79/01/10 91/08/13
00065	STREAM	STAGE	FEET	WATER				2.165100	1.471400	6.00	60	76/12/21 88/04/28
					K	1	.1000000			.10	.10	87/04/22 87/04/22
					TOT	100	2.633000	2.208700	1.486200	6.00	60	76/12/21 88/04/28
00067	TIDE	STAGE	CODE	WATER			3768.900		2181.900	7510	1010	76/12/21 88/04/28
00076	TURB		HACH FTU	WATER		99	1.725700	17.23300	4.151200	37.0	. 2	76/12/21 91/08/13
00078	TRANSP	SECCHI	METERS	WATER		35	1.957200	.2731100	.5226000	3.40	1.25	84/05/22 91/08/13
00094	CNDUCTVY	FIELD	MICROMHO				51400.00			51400	51400	91/08/13 91/08/13
				WATER		485	47268.00	23232000	4820.000	56200	5000	77/01/27 91/08/13
	CNDUCTVY	AT 25C	MICROMHO						7680.000	67000	12200	76/12/21 91/08/13
00116	INTNSVE	SURVEY	IDENT	WATER				.0000000	.0000000	730601	730601	78/02/16 79/01/10
00300	DO		MG/L	BOTTOM			4.400000			4.4	4.4	91/08/13 91/08/13
				WATER		487	6.731700	3.119900	1.766300	17.0	. 2	76/12/21 91/08/13
00301	DO	SATUR	PERCENT	BOTTOM	\$	1	50.00000			50.0	50.0	91/08/13 91/08/13
				WATER	*	479	72.53000	383.2700	19.57700	142.9	2.3	76/12/21 91/08/13
00310	BOD	5 DAY	MG/L	WATER					4.509300	12.0	2.0	78/04/12 79/10/10
00335	COD	LOWLEVEL	MG/L	WATER		27	291.9300	77845.00	279.0100	1155.0	10.0	77/06/08 79/06/13
					K	2	1.000000	.0000000	.0000000	1.0	1.0	78/01/12 78/12/13
					TOT	29	271.8600	77913.00	279.1300	1155.0	1.0	77/06/08 79/06/13
00400	PH		su	BOTTOM		1	7.400000			7.40	7.40	91/08/13 91/08/13
				WATER		485	7.945100	.1270200	.3564000	9.60	3.50	76/12/21 91/08/13
00403	PH	LAB	su	WATER		99	7.864800	.0459580	.2143800	8.3	7.0	76/12/21 91/08/13
00530	RESIDUE	TOT NFLT	MG/L	WATER		81	46.71900	12928.00	113.7000	800	. 6	76/12/21 91/08/13
					K	18	4.011100	3.643400	1.908800	5	. 2	80/01/24 90/04/12
					TOT	99	38.95400	10828.00	104.0600	800	. 2	76/12/21 91/08/13
00535	RESIDUE	VOL NFLT	MG/L	WATER					38.13800	270	. 2	77/04/13 90/06/21
					K	24	3.508300	4.658200	2.158300	5	. 2	80/01/24 91/08/13
					TO T	95	16.92000	1145.800	33.84900	270	. 2	77/04/13 91/08/13
00550	OIL-GRSE	TOT-SXLT	MG/L	WATER				3.612700	1.900700	5.5	. 1	78/04/12 82/11/10
					K		.5000000			. 5	. 5	79/05/10 79/05/10
					TO T				1.899300	5.5	. 1	78/04/12 82/11/10
00610	NH3+NH4-	N TOTAL	MG/L	WATER					.4477000	3.300	.090	77/01/27 91/08/13
					K	32	.0984370	.0000782	.0088433	. 100	.050	76/12/21 85/05/22

/TYPA/AMBNT/ESTURY

PGM=INVENT

HUNCRB

33 45 21.0 118 03 21.0 2 CHRISTIANA BAY, MIDBASIN 06059 CALIFORNIA

ORANGE SANTA ANA RIVER BASIN 140700 HUNTINGTON HARBOUR

21CAOCFC 770210 18070201

0999 FEET DEPTH

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN		STAN DEV		MINIMUM	BEG DATE END DATE
00610	NH3+NH4-	N TOTAL	****	WATER	TOT	98		.1536800		3.300	.050	76/12/21 91/08/13
	UN-IONZD	NH3-N		WATER	\$	88	.0121710		.0153040	.094	. 001	76/12/21 91/08/13
	UN-IONZD	NH3-NH3		WATER	\$	88	.0147980		.0186080	.115	.001	76/12/21 91/08/13
00625	TOT KJEL	N	MG/L	WATER		89	.9693200			6.300	. 100	76/12/21 90/06/21
					K	9	.1333300			. 200	. 100	78/12/13 91/08/13
					TOT	98		.7401100		6.300	. 100	76/12/21 91/08/13
00650	T PO4	P04	MG/L	WATER		74		.0279590		. 92	.06	76/12/21 91/08/13
					K	25	.2462000		.2119800	. 50	.01	77/08/10 90/01/25
					TOT		.2927800	.0325720	.1804800	. 92	.01	76/12/21 91/08/13
00668	PHOS MUD	DRY WGT	MG/KG-P	WATER		1	430.0000			430.0	430.0	83/05/11 83/05/11
00745	SULFIDE	TOTAL	MG/L	WATER		1	.0000000			.00	.00	84/05/22 84/05/22
00747	SULFIDE	IN SED.	MG/KG	WATER		-	70.00000			70.00	70.00	83/05/11 83/05/11
00955	SILICA	DISOLVED	MG/L	WATER			1.073800			3.5	. 2	76/12/21 80/11/13
					K	11			.4036200	1.0	. 1	77/09/14 80/07/09
					TOT	48	.9443700		.7864100	3.5	. 1	76/12/21 80/11/13
01002	ARSENIC	AS, TOT	UG/L	WATER		4		318.8700		40	. 9	82/06/03 87/05/21
					K		7.583300			16	2	77/07/13 89/01/19
					TOT		9.181300				. 9	77/07/13 89/01/19
01003	ARSENIC	SEDMG/KG	DRY WGT	WATER			7.750000				1.50	83/05/11 89/02/16
01027	CADMIUM	CD, TOT	UG/L	WATER			15.50000				1	76/12/21 83/05/11
					K		7.388900				1	77/04/13 89/01/19
					TOT	34	11.20600	288.4100	16.98300		1	76/12/21 89/01/19
01028	CD MUD	DRY WGT	MG/KG-CD	BOTTOM	K	1	.4000000			. 40	.40	91/08/13 91/08/13
				WATER		2		. 2592000	.5091200		.48	81/11/12 83/05/11
					K	1	1.000000			1.00	1.00	89/02/16 89/02/16
					TOT	3		.1381300	.3716600		.48	81/11/12 89/02/16
01029	CHROMIUM	SEDMG/KG	DRY WGT	BOTTOM		1	17.00000			17.00	17.00	91/08/13 91/08/13
				WATER			16.22500				8.90	81/11/12 90/01/25
01034	CHROMIUM	CR, TOT	UG/L	WATER			23.21100				1	77/05/11 87/09/23
					K		16.80400					76/12/21 90/06/21
					· TOT		20.35200				. 3	76/12/21 90/06/21
01042	COPPER	CU, TOT	UG/L	WATER			46.75000				1	77/02/09 90/06/21
					K		21.18400					77/09/14 90/04/12
					TOT	90	35.95600	971.9100	31.17600			77/02/09 90/06/21
01043	COPPER	SEDMG/KG	DRY WGT	BOTTOM			38.00000			38.00		91/08/13 91/08/13
				WATER			34.00000	156.0000	12.49000			81/11/12 90/01/25
01045	IRON	FE, TOT	ug/L	WATER			150.0000			150		86/10/15 86/10/15
01051		PB, TOT	UG/L	WATER		40	12.00000	82.51300	9.083700			76/12/21 82/11/10
		•			K	51	18.21600	1433.200	37.85800	200	1	77/02/09 90/06/21

PAGE: 36 /TYPA/AMBNT/ESTURY

PGM=INVENT

PAGE:

37

HUNCRB

33 43 21.0 118 03 21.0 2 CHRISTIANA BAY, MIDBASIN ORANGE

06059 CALIFORNIA SANTA ANA RIVER BASIN HUNTINGTON HARBOUR

21CAOCFC 770210 0999 FEET DEPTH

18070201

140700

		METER		MEDIUM	RMK	NUMBER			STAN DEV		MINIMUM	BEG DATE END DATE
01051		PB,TOT	UG/L	WATER	TOT	91	15.48400	841.6100	29.01100		1	76/12/21 90/06/21
01052	LEAD	SEDMG/KG	DRY WGT			1	56.00000			56.00	56.00	91/08/13 91/08/13
				WATER		4	93.50000	3269.700	57.18100		53.00	81/11/12 90/01/25
	NICKEL	SEDMG/KG	DRY WGT			1	9.400000			9.40	9.40	91/08/13 91/08/13
	SILVER	SEDMG/KG	DRY WGT		K	1	.2000000			. 20	.20	91/08/13 91/08/13
01092	ZINC	ZN, TOT	UG/L	WATER			42.27200				2	76/12/21 90/01/25
					_ K		21.59100				5	77/04/13 90/06/21
					TOT		37.32600	1164.200	34.12000		2	76/12/21 90/06/21
01093	ZINC	SEDMG/KG	DRY WGT				110.0000			110.00	110.00	91/08/13 91/08/13
				WATER			106.6000				60.00	81/11/12 90/01/25
01102		SN, TOT	UG/L	WATER	K	2	2565.000	11859000	3443.600		130	79/05/10 86/10/15
01147	SELENIUM	SE,TOT	UG/L	WATER		1	2.000000			_2	2	77/07/13 77/07/13
					_ K		12.65000				. 1	78/04/12 89/07/13
					TOT	15	11.94000	210.1800	14.49800		. 1	77/07/13 89/07/13
	SELENIUM		DRY WGT		K	1	.1000000			. 10	.10	83/05/11 83/05/11
	FE MUD		MG/KG-FE			1	.6000000			. 60	.60	89/07/13 89/07/13
32730	PHENOLS	TOTAL	UG/L	WATER		1	50.00000			50	50	77/07/13 77/07/13
					K		30.00000				10	78/04/12 82/11/10
					TOT	11	31.81800	316.3700	17.78700		10	77/07/13 82/11/10
34203	ACNAPTHY	SEDUG/KG	DRY WGT		K	1	.2000000			. 200	. 200	91/08/13 91/08/13
34208	ACNAPTHE	SEDUG/KG	DRY WGT		K	1	. 2000000			. 200	. 200	91/08/13 91/08/13
	ANTHRACE		DRY WGT		K	1	. 2000000			. 200	. 200	91/08/13 91/08/13
34233	BENZBFLU	ORANTMUD			K	1	. 2000000			. 200	. 200	91/08/13 91/08/13
34245	BENZKFLU	SEDUG/KG	DRY WGT	BOTTOM	K	1	. 2000000			. 200	. 200	91/08/13 91/08/13
34250	BENZAPYR	SEDUG/KG	DRY WGT		K	1	.2000000			. 200	. 200	91/08/13 91/08/13
34257	BETA BHC	SEDUG/KG	DRY WGT		K	1	10.00000			10.000	10.000	91/08/13 91/08/13
34259	DELTABHO		TOTUG/L		K		1.000000			1.000	1.000	82/11/10 82/11/10
	DELTABHO		DRY WGT	BOTTOM	K		10.00000			10.000	10.000	91/08/13 91/08/13
	CHRYSENE		DRY WGT		K		.2000000			. 200	. 200	91/08/13 91/08/13
34337	DIETHYLP	HTHALATE	DISSUG/L	WATER	K		1.000000			1.000	1.000	82/11/10 82/11/10
34338	DIETHYLP	HTHALATE	SUSPUG/L	WATER	K		1.000000			1.000	1.000	82/11/10 82/11/10
34351	ENDSULSF		TOTUG/L		K		1.000000			1.000	1.000	82/11/10 82/11/10
34354	ENDSULSF	SEDUG/KG			K		10.00000			10.000	10.000	91/08/13 91/08/13
	B-ENDO	SULFAN	TOTWUG/L		******************		1.000000			1.000	1.000	82/11/10 82/11/10
34359	BENDOSUL	SEDUG/KG	DRY WGT	BOTTOM	K		10.00000			10.000	10.000	91/08/13 91/08/13
34361	A-ENDO	SULFAN	TOTWUG/L	WATER	K	1	1.000000			1.000	1.000	82/11/10 82/11/10
34364	AENDOSUL	SEDUG/KG			K	1	10.00000			10.000	10.000	91/08/13 91/08/13
34369	ENDRINAL	SEDUG/KG	DRY WGT		K	1	10.00000			10.000	10.000	91/08/13 91/08/13
	FLANTENE		DRY WGT	BOTTOM	K	1	.2000000			. 200	. 200	91/08/13 91/08/13

PAGE:

38

/TYPA/AMBNT/ESTURY

HUNCRB
33 43 21.0 118 03 21.0 2
CHRISTIANA BAY, MIDBASIN
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
HUNTINGTON HARBOUR
21CAOCFC 770210 18070201
0999 FEET DEPTH

	PARAM	ETER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
34384	FLUORENE S	EDUG/KG	DRY WGT	BOTTOM	K	1	.2000000			. 200	. 200	91/08/13 91/08/13
34406	I123CDPR S	EDUG/KG	DRY WGT	BOTTOM	K	1	.2000000			. 200	. 200	91/08/13 91/08/13
34445	NAPTHALE S	EDUG/KG	DRY WGT	BOTTOM	K	i	.2000000			. 200	. 200	91/08/13 91/08/13
34464	PHENANTH S	EDUG/KG	DRY WGT	BOTTOM	K	ī	.2000000			. 200	. 200	91/08/13 91/08/13
34472	PYRENE S	EDUG/KG	DRY WGT	BOTTOM	K	Ī	.4000000			.400	. 400	91/08/13 91/08/13
34529	BENZAANT S	EDUG/KG	DRY WGT	BOTTOM	K	ī	.2000000			. 200	. 200	91/08/13 91/08/13
		EDUG/KG	DRY WGT		K	ī	.2000000	•		. 200	. 200	91/08/13 91/08/13
34671	PCB	1016	TOTWUG/L		K	ā	1.000000	.0000000	.0000000	1.000	1.000	81/11/12 82/11/10
38260	MBAS		MG/L	WATER	•	2	.0450000	.0012500		.07	.02	80/10/15 81/05/20
					K	5	.0460000			.10	.01	79/05/10 82/11/10
					TOT	ž		.0018286		. 10	.01	79/05/10 82/11/10
39034	PERTHANE W	HL SMPL	UG/L	WATER	K	2	1.000000	.0000000		1.000	1.000	81/11/12 82/11/10
		H. WATER	(UG/L)	WATER	ĥ	ī	10.00000			10	10	82/11/10 82/11/10
		EDUG/KG	DRY WGT		î	ī	10.00000			10.000	10.000	91/08/13 91/08/13
		EDUG/KG	DRY WGT		ï	ī	10.00000			10.00	10.00	91/08/13 91/08/13
		EDUG/KG		BOTTOM	ĸ	ī	10.00000			10.00	10.00	91/08/13 91/08/13
		EDUG/KG	DRY WGT		ĸ	ī	10.00000			10.00	10.00	91/08/13 91/08/13
	ALDRIN		TOT UG/L		ĸ	á	1.000000	.0000000	. 0000000	1.000	1.000	81/11/12 82/11/10
		EDUG/KG	DRY WGT		ĸ	ĭ	10.00000			10.00	10.00	91/08/13 91/08/13
				WATER	ĸ	ž		.0000000	.0000000	20.00	20.00	81/11/12 82/06/03
39340	GAMMABHC L	INDANE	TOT.UG/L		ĸ	3	1.000000	.0000000		1.000	1.000	81/11/12 82/11/10
	GBHC-MUD L		DRYUG/KG		ĸ	ĭ	10.00000			10.00	10.00	91/08/13 91/08/13
				WATER	ĸ	ž	20.00000	.0000000	.0000000	20.00	20.00	81/11/12 82/06/03
39350	CHLRDANE T	ECHEMET	TOT UG/L		Ë	3	1.000000	.0000000		1.000	1.000	81/11/12 82/11/10
	CDANEDRY T				ĸ	. 1	100.0000			100.00	100.00	91/08/13 91/08/13
				WATER	Ĥ	- 2	20.00000	.0000000	.0000000	20.00	20.00	81/11/12 82/06/03
39360	ש מממ	HL SMPL	UG/L	WATER	Ř		1.000000	.0000000		1.000	1.000	81/11/12 82/11/10
39363	DDD	MUD	UG/KG	WATER	ĸ	ž		.0000000		20.00	20.00	81/11/12 82/06/03
39365		HL SMPL	UG/L	WATER	ĸ	ā	1.000000			1.000	1.000	81/11/12 82/11/10
39368	DDE	MUD	UG/KG	WATER	K	ž	20.00000			20.00	20.00	81/11/12 82/06/03
39370		VHL SMPL	UG/L	WATER	Ë	ā	1.000000			1.000	1.000	81/11/12 82/11/10
39373	DDT	MUD	UG/KG	WATER	ĸ	ž	20.00000			20.00	20.00	81/11/12 82/06/03
39380	DIELDRIN		TOTUG/L	WATER	ĸ	ā	1.000000	.0000000		1.000	1.000	81/11/12 82/11/10
39383		EDUG/KG	DRY WGT	BOTTOM	ĸ	ĭ	10.00000			10.00	10.00	91/08/13 91/08/13
				WATER	ĸ	Ž	20.00000	.0000000	.0000000	20.00	20.00	81/11/12 82/06/03
39390	ENDRIN		TOT UG/L		ĸ	ā	1.000000	.0000000		1.000	1.000	81/11/12 82/11/10
		SEDUG/KG	DRY WGT		ĸ	ĭ	20.00000			20.00	20.00	91/08/13 91/08/13
			2	WATER	Ř	ž	20.00000	.0000000	.0000000	20.00	20.00	81/11/12 82/06/03
39400	TOXAPHEN		TOTUG/L		ĸ	_	1.000000			1.000	1.000	81/11/12 82/11/10
						_						

PGM=INVENT

PAGE:

39

HUNCRB

33 43 21.0 118 03 21.0 2 CHRISTIANA BAY, MIDBASIN

06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700

HUNTINGTON HARBOUR 21CAOCFC 770210 18070201

0999 FEET DEPTH

PARAMETER MEDIUM **DMK** NUMBER MEAN VARIANCE STAN DEV MAXIMUM MINIMUM BEG DATE END DATE 39403 TOXAPHEN SEDUG/KG DRY WGT BOTTOM 1 2000.000 2000.00 2000.00 91/08/13 91/08/13 2 20.00000 .0000000 .0000000 WATER 20.00 20.00 81/11/12 82/06/03 39410 HEPTCHLR 3 1.000000 .0000000 .0000000 TOTUG/L WATER 1.000 1.000 81/11/12 82/11/10 39413 HEPTCHLR SEDUG/KG DRY WGT BOTTOM 1 10.00000 10.00 10.00 91/08/13 91/08/13 2 20.00000 .0000000 .0000000 20.00 20.00 81/11/12 82/06/03 WATER 3 1.000000 .0000000 .0000000 TOTUG/L WATER 39420 HPCHLREP 1.000 1.000 81/11/12 82/11/10 39423 HPCHLREP SEDUG/KG DRY WGT BOTTOM 1 10.00000 10.00 10.00 91/08/13 91/08/13 2 20.00000 .0000000 .0000000 20.00 20.00 81/11/12 82/06/03 WATER UG/L 3 1.000000 .0000000 .0000000 1.000 1.000 81/11/12 82/11/10 39480 MTHXYCLR WHL SMPL WATER UG/KG BOTTOM 70.00 91/08/13 91/08/13 1 70.00000 70.00 39481 MTHXYCLR MUD DRY WATER 2 20.00000 .0000000 .0000000 20.00 20.00 81/11/12 82/06/03 TOTUG/L WATER 3 1.000000 .0000000 .0000000 1.000 1.000 81/11/12 82/11/10 39488 PCB-1221 39491 PCB-1221 SEDUG/KG DRY WGT BOTTOM 1 100.0000 100.00 100.00 91/08/13 91/08/13 20.00 81/11/12 82/06/03 2 20.00000 .0000000 .0000000 20.00 WATER 39492 PCB-1232 TOTUG/L WATER 3 1.000000 .0000000 .0000000 1.000 1.000 81/11/12 82/11/10 39495 PCB-1232 SEDUG/KG DRY WGT BOTTOM 1 100.0000 100.00 100.00 91/08/13 91/08/13 2 20.00000 .0000000 .0000000 20.00 20.00 81/11/12 82/06/03 WATER TOTUG/L WATER 3 1.000000 .0000000 .0000000 1.000 1.000 81/11/12 82/11/10 39496 PCB-1242 100.00 100.00 91/08/13 91/08/13 39499 PCB-1242 SEDUG/KG DRY WGT BOTTOM 1 100.0000 2 20.00000 .0000000 .0000000 20.00 20.00 81/11/12 82/06/03 WATER TOTUG/L WATER 1.000 3 1.000000 .0000000 .0000000 1.000 81/11/12 82/11/10 39500 PCB-1248 39503 PCB-1248 SEDUG/KG DRY WGT BOTTOM 100.00 100.00 91/08/13 91/08/13 1 100.0000 WATER 1 20.00000 20.00 20.00 82/06/03 82/06/03 39504 PCB-1254 TOTUG/L WATER 3 1.000000 .0000000 .0000000 1.000 1.000 81/11/12 82/11/10 39507 PCB-1254 SEDUG/KG DRY WGT BOTTOM 100.00 100.00 91/08/13 91/08/13 1 100.0000 20.00 2 20.00000 .0000000 .0000000 20.00 81/11/12 82/06/03 WATER 1.000 81/11/12 82/11/10 TOTUG/L WATER 3 1.000000 .0000000 .0000000 1.000 39508 PCB-1260 100.00 91/08/13 91/08/13 100.00 39511 PCB-1260 SEDUG/KG DRY WGT BOTTOM 1 100.0000 2 20.00000 .0000000 .0000000 20.00 20.00 81/11/12 82/06/03 WATER 100.00 100.00 91/08/13 91/08/13 39514 PCB-1016 SEDUG/KG DRY WGT BOTTOM 1 100.0000 20.00 WATER 1 20.00000 20.00 81/11/12 81/11/12 WHL SMPL UG/L 1 1.000000 1.000 1.000 82/11/10 82/11/10 WATER 39530 MALATHN UG/KG BOTTOM 1 30.00000 30.00 30.00 91/08/13 91/08/13 39531 MALATHN MUD 20.00 81/11/12 81/11/12 20.00 WATER 1 20.00000 WHL SMPL UG/L WATER 1 1.000000 1.000 1.000 82/11/10 82/11/10 39540 PARATHN 30.00 91/08/13 91/08/13 UG/KG BOTTOM 30.00 1 30.00000 39541 PARATHN MUD K K 3 10.00000 1 5000.000 20.00 20.00 81/11/12 81/11/12 WATER 3 10.00000 .0000000 .0000000 10.000 39730 2,4-D WHL SMPL UG/L WATER 10.000 81/11/12 82/11/10 MUD UG/KG BOTTOM 5000.00 5000.00 91/08/13 91/08/13 39731 2,4-D

PGM=INVENT

PAGE:

/TYPA/AMBNT/ESTURY

HUNCRB

33 45 21.0 118 03 21.0 2 CHRISTIANA BAY, MIDBASIN

06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700 HUNTINGTON HARBOUR

21CAOCFC 770210 0999 FEET DEPTH 18070201

	PAR	AMETER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
39731	2,4-D	MUD	UG/KG	WATER	K	2	100.0000	.0000000	.0000000	100.00	100.00	81/11/12 82/06/03
39760	SILVEX	WHL SMPL	UG/L	WATER	K	3	10.00000	.0000000	.0000000	10.000	10.000	81/11/12 82/11/10
39761		MUD	UG/KG	BOTTOM	Ŕ	ĭ	2000.000			2000.00		91/08/13 91/08/13
			uu,	WATER	ĸ	ż	100.0000	0000000	.0000000	100.00	100.00	81/11/12 82/06/03
20781	LINDANE	WHL SMPL	UG/L	WATER	ĥ	_	1.000000	.0000000				
										1.000	1.000	81/11/12 82/11/10
	LINDANE	MUD DRY	UG/KG	WATER	K	-	20.00000		.0000000	20.00		81/11/12 82/06/03
71850	NITRATE	TOT-NO3	MG/L	WATER		3 3	2.397000			10.0	. 2	76/12/21 90/05/23
					K	33	.3751500	.0247760	.1574000	1.0	. 1	77/08/10 91/08/13
					TOT	99	1.723000	5.017700	2.240000	10.0	. 1	76/12/21 91/08/13
71885	IRON	FE	UG/L	WATER		2	145.0000	50.00000	7.071100	150.00	140.00	77/07/13 86/10/15
71900	MERCURY	HG, TOTAL	UG/L	WATER			3.055600			11.0	. 2	77/07/13 83/05/11
		,			K	7			.5318400	2.0	.5	78/11/08 89/07/13
					TOT	16	2.087500					
71001	HEDOLIDY	05040740	DOV MAT	WATER	101					11.0	. 2	77/07/13 89/07/13
/1921	MERCURY	SEDMG/KG	DRY WGT	WAIER		4	.1100000		.0282850	• 1	.09	81/11/12 83/05/11
					K	2	.3000000		.1414200	. 4	. 2	89/02/16 89/07/13
					TOT	4	.2050000	.0189670	.1377200	. 4	.09	81/11/12 89/07/13
74041	WQF	SAMPLE	UPDATED	BOTTOM		1	920110.0			920109	920109	91/08/13 91/08/13
				WATER		211	888340.0	1589E+05	12606.00	920109	860715	85/10/16 91/08/13
78453	PCB-1262	SED DRY	WT UG/KG	BOTTOM	K	1	100.0000			100.000		91/08/13 91/08/13
	BZO(GHI)				Ĥ	ī	.2000000			.20		91/08/13 91/08/13
	PERTHANE	SED DRY			i i	i	70000.00			70000.00		91/08/13 91/08/13

/TYPA/AMBNT/LAKE

PGM=INVENT

PAGE:

41

SUNC07 33 43 22.0 118 03 02.0 2 CO7 AT HEIL AVENUE BRIDGE 06059 CALIFORNIA O SANTA ANA RIVER BASIN ORANGE

18070201

21	CAL	JUF G	//082	
09	99	FEET	DEPTH	

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
00010	WATER	TEMP	CENT	WATER		14	17.53600	21.24900	4.609700	26.0	12.0	73/10/02 83/03/24
00011	WATER	TEMP	FAHN	WATER	\$	14	63.56400	68.86100	8.298200	78.8	53.6	73/10/02 83/03/24
00061	STREAM	FLOW.	INST-CFS	WATER	J	9	14.69500	95.09000	9.751400	25	. 3	77/05/10 83/03/24
00076	TURB '	TRBIDMTR	HACH FTU	WATER		14	47.70700	1409.600	37.54400	100.0	1.6	73/05/08 83/03/24
00094	CNDUCTVY I	FIELD	MICROMHO	WATER		11	1799.100	7724000	2779.200	10000	140	77/05/10 83/03/24
00095	CNDUCTVY	AT 25C	MICROMHO	WATER		20	17162.00	4002E+05	20006.00	50720	200	73/04/17 83/03/24
00116	INTNSVE	SURVEY	IDENT	WATER		14	678420.0	3812E+07	195260.0	730601	0	77/05/10 83/03/24
00300	DO		MG/L	WATER		10	9.640000	5.765000	2.401000	14.4	5.0	77/05/10 83/03/24
					L	1	15.00000			15.0	15.0	78/01/06 78/01/06
					TOT	11	10.12700	7.800300	2.792900	15.0	5.0	77/05/10 83/03/24
00301	DO	SATUR	PERCENT	WATER	\$	11	106.4900	882.1200	29.70100	150.0	51.5	77/05/10 83/03/24
00335	COD	LOWLEVEL	MG/L	WATER		5	120.8000	10682.00	103.3500	280.0	23.0	77/07/12 78/03/01
					K	2	1.500000	.5000000	.7071100	2.0	1.0	77/12/27 78/02/09
					τοτ	7	86.71400	10510.00	102.5200	280.0	1.0	77/07/12 78/03/01
00400	PH		su	WATER		9	7.355600	.4803200	.6930500	8.30	6.00	77/05/10 83/03/24
00403	PH	LAB	su	WATER		20	7.655000	.3289200	.5735200	8.6	6.8	73/04/17 83/03/24
00405	C02		MG/L	WATER		2	1.000000	2.000000	1.414200	2.0	- 0	77/05/10 77/07/12
00440	HCO3 ION	HCO3	MG/L	WATER		4	156.0000	2535.300	50.35200	194	83	73/05/08 77/07/12
00445	CO3 ION	CO3	MG/L	WATER		3	2.800000	23.52000	4.849800	8	0	73/05/08 77/07/12
00530	RESIDUE	TOT NFLT	MG/L	WATER		18	92.82200	6802.600	82.47800	341	10	73/04/17 83/03/24
00535	RESIDUE	VOL NFLT	MG/L	WATER		12	46.09200	1450.900	38.09000	111	5	77/05/10 83/03/24
00550	OIL-GRSE	TOT-SXLT	MG/L	WATER		3	5.100000	18.01000	4.243800	10.0	2.6	78/01/06 82/03/17
00610	NH3+NH4-	N TOTAL	MG/L	WATER		12	.6858300	1.465100	1.210400	4.300	. 000	73/06/04 83/03/24
					K	8	.1000000	.0000000	.0000000	.100	. 100	73/04/17 80/01/29
					TOT	20	.4515000	.9349400	.9669200	4.300	.000	73/04/17 83/03/24
00612	UN-IONZD	NH3-N	MG/L	WATER	\$	14	.0097568	.0004671	.0216130	.083	.00005	73/10/02 83/03/24
00615	NO2-N	TOTAL	MG/L	WATER	K	1	.1000000			.100	.100	73/10/02 73/10/02
00619	UN-IONZD	NH3-NH3	MG/L	WATER	\$	14	.0118630	.0006905	.0262790	.101	.00006	73/10/02 83/03/24
00625	TOT KJEL	N	MG/L	WATER		20	3.279000	24.48500	4.948300	23.000	.500	73/04/17 83/03/24
00650	T P04	P04	MG/L	WATER		20	.6920000	.2083200	.4564200	1.68	.02	73/04/17 83/03/24
00900	TOT HARD	CACO3	MG/L	WATER		3	4661.700	9699500	3114.400	6596	1069	73/06/04 77/07/12
		CA.DISS	MG/L	WATER		4	311.8800	27660.00	166.3100	400.0	62.5	73/05/08 77/07/12
		MG.DISS	MG/L	WATER		4		275320.0		1360.0	220.0	73/05/08 77/07/12
00930		NA.DISS	MG/L	WATER		4		17483000			1800.00	73/05/08 77/07/12
	PTSSIUM	K.DISS	MG/L	WATER		À		30686.00		444.00	77.00	73/05/08 77/07/12
	CHLORIDE	TOTAL	MG/L	WATER		4		57647000		19380	3183	73/05/08 77/07/12
		SO4-TOT	MG/L	WATER		Ă	2010.500		1063.600		463	73/05/08 77/07/12
		F,DISS	MG/L	WATER		Ă		. 2755700			. 20	73/05/08 77/07/12
		DISOLVED	MG/L	WATER		16		16.49400			.5	73/04/17 80/01/29
00500	~~~~~		111 W/ -							-,,,	. 0	

/TYPA/AMBNT/LAKE

PGM=INVENT

PAGE:

SUNC07

33 43 22.0 118 03 02.0 2 CO7 AT HEIL AVENUE BRIDGE 06059 CALIFORNIA SANTA ANA RIVER BASIN ORANGE

21CAOCFC 770826 0999 FEET DEPTH

18070201

	PARA	AMETER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
01002	ARSENIC	AS, TOT	UG/L	WATER	K	1	2.000000			2	2	77/07/12 77/07/12
01020	BORON	B.DISS	UG/L	WATER		4	2206.000	3860900	1964.900	4000	4	73/05/08 77/07/12
		CD, TOT	UG/L	WATER		8	8.250000	136.5000	11.68300	36	2	73/07/16 78/03/01
		CR. TOT	UG/L	WATER		7	85.28600	26312.00	162.2100	450	9	77/07/12 82/01/05
	•••••				K	4	8.250000	20.25000	4.500000	12	2	78/03/01 83/03/24
					TOT	11	57.27300	17304.00	131.5400	450	2	77/07/12 83/03/24
01037	COBALT	CO. TOTAL	UG/L	WATER	K	ì	2.000000			2	2	78/03/01 78/03/01
	COPPER	CU. TOT	UG/L	WATER		14	26.28600	382.5300	19.55800	86	8	73/07/16 83/03/24
01051		PB, TOT	UG/L	WATER		14	158.4300	21736.00	147.4300	530	8	73/06/04 83/03/24
0.001		,			K	1	5.000000			5	5	73/09/17 73/09/17
					TOT	15	148.2000	21753.00	147.4900	530	5	73/06/04 83/03/24
01092	7TNC	ZN, TOT	UG/L	WATER		12	99.50000	2489.400	49.89400	190	34	77/07/12 83/03/24
0.002					K	1	5.000000			5	5	73/07/16 73/07/16
					TOT	13	92.23100	2968.900	54.48700	190	5	73/07/16 83/03/24
01147	SELENIUM	SE.TOT	UG/L	WATER	K	1	2.000000			2	2	77/07/12 77/07/12
	TOT COLI		/100ML	WATER		و	508110.0	6200E+08	787420.0	2400000	24000	77/12/27 82/01/05
	PHENOLS	TOTAL	UG/L	WATER	K	ì	.0500000			.05	. 05	77/07/12 77/07/12
	CAL HARD		MG/L	WATER	\$	4	4814.400	6586100	2566.300	6599	1062	73/05/08 77/07/12
	DISS SOL		MG/L	WATER		4	25811.00	1878E+05	13708.00	35180	5854	73/05/08 77/07/12
	NITRATE	TOT-NO3	MG/L	WATER		18	4.827800	23.73400	4.871700	17.5	.0	73/04/17 83/03/24
,,,,,,,		101			K	2	.1000000	.0000000	.0000000	. 1	. 1	73/07/09 73/10/02
					TOT	20	4.355000	23.35300	4.832500	17.5	. 0	73/04/17 83/03/24
71885	IRON	FE	UG/L	WATER		ĩ	920.0000			920.00	920.00	77/07/12 77/07/12
71900		HG, TOTAL	UG/L	WATER	K	ĭ	.2000000			. 2		77/07/12 77/07/12
, 1900	MEROUR I	, . O . AL		.,	• • • • • • • • • • • • • • • • • • • •	•						

42

PGM=INVENT

PAGE:

43

HUNBCC

33 43 36.0 118 04 25.0 2

ENTRANCE OF BOLSA CHICA CHANNEL 06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700

HUNTINGTON HARBOUR

21CAOCFC 770210 0999 FEET DEPTH HQ 18070201001 0010.180 OFF

		METER	OFUT	MEDIUM	RMK	NUMBER	MEAN 19.70000	VARIANCE	STAN DEV	MAXIMUM 19.7	MINIMUM 19.7	BEG DATE END DATE 91/08/13 91/08/13
00010	WATER	TEMP	CENT	BOTTOM WATER				8.882400	2.980300	25.9	12.2	76/11/22 91/08/13
00011	WATER	TEMP	FAHN	BOTTOM	\$		67.46000	0.002400	2.300000	67.5	67.5	91/08/13 91/08/13
00011	"A ! E !	, = m.	, ,,,,,,	WATER	.			28.72200	5.359300	78.6	54.0	76/11/22 91/08/13
00035	WIND	VELOCITY	MPH	WATER		62	5.735500	12.04300	3.470300	20.0	. 0	78/12/13 91/08/13
00036	WIND	DIR.FROM	NORTH-0	WATER				2866.700		315	0	78/12/13 91/08/13
00065	STREAM	STAGE	FEET	WATER				2.176500		5.80	80	76/11/22 88/05/12
					K			.0050000		. 10	. 00	84/02/16 87/04/22
					TOT			2.259700		5.80	80	76/11/22 88/05/12
00067	TIDE	STAGE	CODE	WATER			3800.900		2230.200		1010	76/11/22 88/05/12
00076	TURB	TRBIDMTR	HACH FTU	WATER				26.92800	5.189200		. 2	76/11/22 91/08/13
					_ <u>K</u>		.1000000		- 167700	1	.1	88/06/16 88/06/16
					ТОТ			26.70500			: 1	76/11/22 91/08/13
00078	TRANSP	SECCHI	METERS	WATER		30		.2914700	. 2338800		. 75	84/05/22 91/08/13
00094	CNDUCTVY	FIELD	MICROMHO			1 1	50800.00	07075000	E100 600	50800	50800	91/08/13 91/08/13
			***********	WATER				27035000		56400	4600 2550	77/01/27 91/08/13
	CNDUCTVY	AT 25C	MICROMHO					68146000			730601	76/11/22 91/08/13 78/02/16 79/01/10
00116	INTHSVE	SURVEY	IDENT	WATER BOTTOM			6.000000	. 0000000	. 0000000	6.0	6.0	91/08/13 91/08/13
00300	D0		MG/L	WATER				1.690100	1 200000		4.2	76/11/22 91/08/13
00301	50	CATUD	DEDOENT	BOTTOM	•		65.21700	1.690100	1.300000	65.2	65.2	91/08/13 91/08/13
00301	DO	SATUR	PERCENT	WATER	\$			192.4100	12 97100		46.7	76/11/22 91/08/13
00210	BOD	5 DAY	MG/L	WATER	•		3.333300		.5773600		3.0	78/11/08 81/05/20
00310	BOD	3 DAT	MG/L	MAIER	K	3	3.000000	. 3333400	. 3773000	3.0		79/10/10 79/10/10
					τοτ	À		. 2500000	. 5000000		3.0	78/11/08 81/05/20
00335	COD	LOWLEVEL	MG/L	WATER	101	24		61479.00			23.0	77/06/08 79/05/10
00333	COD	CONCEVEL	WG/ L	MAILE	K			40.50000			1.0	78/01/12 79/02/15
					τοτ			60022.00			1.0	77/06/08 79/05/10
00400	PН		su	BOTTOM	,,,,		7.600000		• . • . • • • •	7.60		91/08/13 91/08/13
00400				WATER				.0997540	.3158400		6.20	76/11/22 91/08/13
00403	ÞН	LAB	su	WATER				.0579360				76/11/22 91/08/13
	RESIDUE	TOT NELT	MG/L	WATER				11928.00				76/11/22 91/08/13
*****					K	20	5.000000	.0000000	.0000000	5	5	86/11/19 90/04/12
					TOT	103	39.66900	9881.800	99.40700	760	. 8	76/11/22 91/08/13
00535	RESIDUE	VOL NFLT	MG/L	WATER		72	22.35100	1371.400	37.03200	260	. 4	77/04/13 90/06/21
		· · · · -·			K	27	4.181500	3.070000	1.752200			77/12/14 91/08/13
					TOT	99	17.39600	1060.500	32.56500		. 4	77/04/13 91/08/13
00550	OIL-GRSE	TOT-SXLT	MG/L	WATER		11	10.91800	260.5800	16.14300		. 4	78/11/08 85/10/16
					K	3	1.866700	7.403300	2.720900	5.0	. 1	79/05/10 86/10/15

PAGE:

44

/TYPA/AMBNT/ESTURY

HUNBCC 33 43 36.0 118 04 25.0 2 ENTRANCE OF BOLSA CHICA CHANNEL 06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700 HUNTINGTON HARBOUR

21CAOCFC 770210 0999 FEET DEPTH

		METER		MEDIUM	RMK	NUMBER	MEAN		STAN DEV		MINIMUM	BEG DATE END DATE
	OIL-GRSE			WATER	TOT					56.4	1	78/11/08 86/10/15
00610	NH3+NH4-	N TOTAL	MG/L	WATER			.4023300			5.400	.050	76/11/22 91/08/13
					K					.500	.100	76/12/21 85/05/22
					TOT		.3181500			5.400	.050	76/11/22 91/08/13
	UN-IONZD	NH3-N	' MG/L	WATER	\$.0005834		. 193	.0005	76/11/22 91/08/13
	UN-IONZD	NH3-NH3	MG/L	WATER	\$.0008626		. 235	.0006	76/11/22 91/08/13
00625	TOT KJEL	N	MG/L	WATER				.7199500		6.400	.200	76/11/22 90/06/21
					K			.0177780		.500	.100	78/11/08 91/08/13
					TOT			.7069800		6.400	-100	76/11/22 91/08/13
00650	T P04	P04	MG/L	WATER		78	.3367900			1.38	.03	76/11/22 91/08/13
					K			.0456410		.50	.01	76/12/21 90/05/23
					TOT			.0508520		1.38	.01	76/11/22 91/08/13
	PHOS MUD	DRY WGT		WATER				433130.0		1600.0	11.0	78/04/12 85/10/16
00680	T ORG C	C	MG/L	WATER		2	1951.100	7596400	2756.200	3900.0	2.2	83/11/09 86/10/15
00745	SULFIDE	TOTAL	MG/L	WATER		1	.0000000			.00	.00	84/05/22 84/05/22
00747	SULFIDE	IN SED.	MG/KG	WATER				.0000000		80.00	80.00	82/06/03 83/05/11
					K	5		.1280000		1.80	1.00	82/11/10 85/10/16
					TOT	7		1480.000		80.00	1.00	82/06/03 85/10/16
00955	SILICA	DISOLVED	MG/L	WATER		33	1.130300	.8971900		3.7	.1	76/11/22 80/11/13
					K		.4714300		.3646500	1.0	. 1	77/02/09 80/07/09
					TOT			.7544700		3.7	. 1	76/11/22 80/11/13
01002	ARSENIC	AS, TOT	UG/L	WATER				260.7300		40	. 9	82/06/03 87/05/21
					K	16	8.937500	55.12900	7.424900	28	2	77/07/13 89/01/19
					TOT			96.27700		40	. 9	77/07/13 89/01/19
01003	ARSENIC	SEDMG/KG	DRY WGT	WATER				32.20300		21.00	.70	78/04/12 89/01/19
01027	CADMIUM	CD, TOT	UG/L	WATER				445.2600		82	· 1	76/12/21 85/10/16
		-			K	21	7.404800	62.49100	7.905100	30	. 5	76/11/22 89/01/19
					TOT	37	10.28400	231.4300	15.21300	82	. 5	76/11/22 89/01/19
01028	CD MUD	DRY WGT	MG/KG-CD	BOTTOM	K	1	.4000000			. 40	. 40	91/08/13 91/08/13
				WATER		16		.3468200		2.50	. 25	78/04/12 89/01/19
					K	3	.6666700	.0433340	.2081700	. 90	.50	83/11/09 89/01/18
					TOT	19	1.083700	.3282500	.5729300	2.50	. 25	78/04/12 89/01/19
01029	CHROMIUM	SEDMG/KG	DRY WGT	BOTTOM		1	15.00000			15.00	15.00	91/08/13 91/08/13
				WATER		20	16.69000	63.04700	7.940200	34.00	3.00	78/04/12 90/01/25
01034	CHROMIUM	CR. TOT	UG/L	WATER		36	24.43300	759.9800	27.56800	140	1	77/04/13 89/08/16
	-: 				K	35	16.38300	426.5700	20.65400	100	. 1	76/11/22 90/06/21
					TOT	71	20.46500	603.6100	24.56900		. 1	76/11/22 90/06/21
01042	COPPER	CU, TOT	UG/L	WATER		58	46.99700	2672.400	51.69500	320	1	77/02/09 90/06/21
		,			K	37	21.59500	326.2500	18.06200	70	1	77/09/14 90/01/25
					, ,							

/TYPA/AMBNT/ESTURY

PGM=INVENT

PAGE:

45

HUNBCC

33 43 36.0 118 04 25.0 2 ENTRANCE OF BOLSA CHICA CHANNEL 06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700

HUNTINGTON HARBOUR 21CAOCFC 770210 0999 FEET DEPTH

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE	END DATE
01042		CU, TOT	UG/L	WATER	TOT	95	37.10300	1900.500	43.59500	320	1	77/02/09	90/06/21
	COPPER	SEDMG/KG	DRY WGT			1	23.00000			23.00	23.00	91/08/13	91/08/13
0.040	JJ L.	J	5	WATER		20	40.59500	250.5400	15.82800	85.00	18.00	78/04/12	90/01/25
01045	IRON	FE, TOT	UG/L	WATER			137.3300			210	54	83/11/09	86/10/15
01051		PB. TOT	ug/L	WATER			15.44200			63	1		89/08/16
0.001	F-05	PD, 101	uu. L	**********	K	. •	20.60000			200	ī	76/11/22	
					τοτ		18.33700			200	ī		90/06/21
01052	LEAD	SEDMG/KG	DRY WGT	ROTTOM	,		24.00000	1100.000	00.21200	24.00	24.00	91/08/13	
01032	ELAU	SEDMG/ KG	DK! NU!	WATER				3522.400	59.35000	244.00	19.00	78/04/12	
01069	NICKEL	SEDMG/KG	DRY WGT				7.500000	0022.400	03.0000	7.50	7.50		91/08/13
	SILVER	SEDMG/KG	DRY WGT		K		.2000000			. 20	. 20		91/08/13
01078		ZN. TOT	ÜĞ/L	WATER				1475 500	38.41200	190			90/01/25
01092	ZINC	ZN, 101	ud/ L	WATER	K	27			27.11100	150	Š	77/04/13	
					τοτ				36.99800	190	š		90/06/21
01093	77110	SEDMG/KG	DRY WGT	POTTOM	,01		110.0000	1000.500	00.55000	110.00	110.00		91/08/13
01093	ZINC	SEDMG/KG	ואט אטו	WATER			149.1000	10896 00	104 3800	570.00	51.00		90/01/25
01100	T T 1 1	ON TOT	110.71	WATER	K		1941.700		1955.900	5000	20		86/10/15
01102		SN, TOT	UG/L		,				47.37600	85.00	18.00		85/10/16
01103	TIN MUD	DRY WGT	MG/KG-SN	WAILK	v		125.0000	2244.500	47.37800	125.00	125.00		84/12/12
					K			0003 000	54.06500	125.00	18.00		85/10/16
					TOT	3		2923.000	54.06500				
	SILICON		UG/L SI		K	Ţ	2.000000	10 70000	2 564300	2			84/05/22
01147	SELENIUM	SE, TOT	UG/L	WATER	.,	. 4			3.564100		. 1		86/10/15
					_ K				37.36100	150	. 5		89/07/13
					тот				34.22600	150	. 1		89/07/13
01148	SELENIUM	SEDMG/KG	DRY WGT	WATER		3			2.515300	4.80	. 24		81/05/20
					K	. 9			.6545800	1.80	. 07		85/10/16
					TOT				1.323500	4.80	.07		85/10/16
01170		DRY WGT	MG/KG-FE			4			11529.00				89/07/13
01501	ALPHA	TOTAL	PC/L	WATER		3		.0010290	.0320780	. 06	Ō		89/02/01
					K	1	3.000000			3	3		81/05/20
					TOT	4		2.208900	1.486200		0		89/02/01
01502	ALPHA-T	ERROR	PC/L	WATER		1	. 3000000			. 3	. 3		81/05/20
03501	BETA	TOTAL	PC/L	WATER		3		419.6300	20.48500		.01		89/02/01
					K	1	4.000000			4	4		81/05/20
					TOT	4		295.1500	17.18000		.01		89/02/01
03502	BETA-T	ERROR	PC/L	WATER		1	1.000000			1	1		81/05/20
09501	RA-226	TOTAL	PC/L	WATER	K	1	.5000000			. 5			81/05/20
09502		ERROR	PC/L	WATER		1	.1000000			. 1	. 1		81/05/20
32730	PHENOLS	TOTAL	UG/L	WATER	K	10	34.00000	293.3300	17.12700	50	10	77/07/13	82/11/10

PAGE:

46

/TYPA/AMBNT/ESTURY

HUNBCC 33 43 36.0 118 04 25.0 2 ENTRANCE OF BOLSA CHICA CHANNEL 06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700 HUNTINGTON HARBOUR

21CAOCFC 770210 0999 FEET DEPTH

	PARAM	METER			MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MUMINIM	BEG DATE E	ND DATE
34203	ACNAPTHY S		DRY	WGT	BOTTOM	K	1	. 2000000			. 200	. 200	91/08/13 9	1/08/13
	ACNAPTHE S				BOTTOM	K	1	.2000000			. 200	. 200	91/08/13 9	1/08/13
	ANTHRACE S				BOTTOM	K	ī	.2000000			. 200	. 200	91/08/13 9	1/08/13
	BENZBFLU (ĸ	ī	.2000000			.200	. 200	91/08/13 9	1/08/13
	BENZKFLU S				BOTTOM	ĸ.	ĭ	.2000000			. 200	. 200	91/08/13 9	1/08/13
	BENZAPYR S				BOTTOM	ĸ	ī	.2000000			. 200	.200	91/08/13 9	
	BETA BHC				BOTTOM	ĸ	ī	10.00000			10.000	10.000	91/08/13 9	
34237	BEIM BHO S	SEDUG! Ku	UKI	WG I	WATER	ĥ		8.875300	38.69100	6.220200	20.000	.002	82/11/10 8	
24250	DELTABHO		TOTI	IG /1	WATER	Ř		.1234000			1.000	.002	82/11/10 8	
	DELTABHO S	eEDUG/PG			BOTTOM	Ŷ		10.00000	. 03000.0		10.000	10.000	91/08/13 9	
34202	DELIABRO S	SEDUG/ NG	URI	WGI	WATER)		8.875300	38.69100	6.220200	20.000	.002	82/11/10 8	
24222	CHRYSENE S	EEDIIG /VC	DDY	WCT	BOTTOM	K K K	ĭ	.2000000	00.03.00	0.120200	. 200	.200	91/08/13 9	
	DIETHYLP					k	i	1.000000			1.000	1.000	82/11/10 8	
	DIETHYLP					Ŕ		1.000000			1.000	1.000	82/11/10 8	
	ENDSULSE	HINALAIL			WATER	Ş		1.150600	9 756300	3 123500	10.000	.003	82/11/10 8	
		CEDUC /VC			BOTTOM	K K K		10.00000	3.750500	3.123300	10.000	10.000	91/08/13 9	
34334	ENDSULSF S	SEDUG/KG	DKI	WGI	WATER			25.12500	364 3000	10 08900	50.000	.003	82/11/10 8	
24256	B ENDO 4	COU EAN	TOTWI	10 /1	WATER	k		.1254000			1.000	.002	82/11/10 8	
		SULFAN				Ŕ	10	10.00000	.0340/30	. 3000100	10.000	10.000	91/08/13 9	
34359	BENDOSUL S	SEDUG/KG	י אט	WGI	BOTTOM WATER	K	ī	11.37500	OF 11000	0 752000	30.000	.002	82/11/10 8	
		O	TOTUL				•	.0020000	93.11900	9.732300	. 002	.002	89/01/19 8	
34361	A-ENDO	SULFAN	IUIW	16/L	WATER	K	9		.1046200	2224500	1.000	.002	82/11/10 8	
						тот	-	.1254000			1.000	.002	82/11/10 8	
		055110 (140	554	WOT	DOTTON		10	10.00000	.0546/30	. 2000100	10.000	10.000	91/08/13 9	
34364	AENDOSUL :	SEDUG/KG	זאט	WGI	BOTTOM	K	1	11.37500	05 11000	0 752000	30.000	.002	82/11/10 8	
					WATER	K	•	10.00000	95.11900	9.752900	10.000	10.000	91/08/13 9	
	ENDRINAL				BOTTOM	K	1	.2000000			. 200	.200	91/08/13 9	
	FLANTENE				BOTTOM	K K	į				. 200	.200	91/08/13 9	
	FLUORENE				BOTTOM	K		. 2000000			. 200	.200	91/08/13 9	
	I123CDPR				BOTTOM	Ķ	1	. 2000000				.200		
	NAPTHALE				BOTTOM	K	1	. 2000000			. 200		91/08/13 9	
	PHENANTH				BOTTOM	K	1	. 2000000			. 200	. 200	91/08/13 9 91/08/13 9	
		SEDUG/KG			BOTTOM	K K	Ī	. 4000000			. 400	. 400		
	BENZAANT				BOTTOM	K	Ţ	. 2000000			. 200	. 200	91/08/13 9	
					BOTTOM	K	. 1	. 2000000	1010600	4055100	. 200	. 200	91/08/13 9	
34671	PCB	1016			WATER	K	12	.6633300	.1810600	.4255100	1.000	. 030	81/11/12 8	
38260	MBAS		MG	/L	WATER		6		.0632300			.01	80/10/15 8	
						K	5		.0024300			.01	79/05/10 8	
				_		TOT	11		.0425370			.01	79/05/10 8	
39034	PERTHANE	WHL SMPL	UG/	L.	WATER	K	14	.9647200	.4785100	.6917400	3.000	. 003	79/05/10 8	39/01/19

PGM=INVENT

PAGE:

47

HUNBCC

33 43 36.0 118 04 25.0 2 ENTRANCE OF BOLSA CHICA CHANNEL

06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700

HUNTINGTON HARBOUR 21CAOCFC 770210 0999 FEET DEPTH

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN		STAN DEV		MINIMUM	BEG DATE END DATE
39046	SIMAZINE	MUD	UG/GK	WATER	K	6	1015.800	3962400	1990.600	5000.00	5.00	79/05/10 88/01/21
39055	SIMAZINE	WH. WATER	(UG/L)	WATER	K	12	1.816700	8.334300	2.886900	10	. 1	79/05/10 89/01/19
39057	PRMETRYN	WH. WATER	(UG/L)	WATER	K	1	.1000000			. 1	. 1	89/01/19 89/01/19
	ALPHABHC		DRY WGT	BOTTOM	K	1	10.00000			10.000	10.000	91/08/13 91/08/13
				WATER	K	7	8.571700	39.28000	6.267400	20.000	.002	82/11/10 89/01/19
39301	P.P'DDT	SEDUG/KG	DRY WGT	BOTTOM	K	1	10.00000			10.00	10.00	91/08/13 91/08/13
		SEDUG/KG	DRY WGT	BOTTOM	K	1	10.00000			10.00	10.00	91/08/13 91/08/13
	P.P'DDE	SEDUG/KG	DRY WGT	BOTTOM	K	1	10.00000			10.00	10.00	91/08/13 91/08/13
	ALDRIN		TOT UG/L	WATER		1	.0040000			.004	. 004	89/01/19 89/01/19
					K	18	.4702800	.2383300	.4882000	1.000	. 005	77/07/13 89/01/19
					TOT	19	.4457400	. 2365400	.4863500	1.000	. 004	77/07/13 89/01/19
39333	ALDRIN	SEDUG/KG	DRY WGT	BOTTOM	K	1	10.00000			10.00	10.00	91/08/13 91/08/13
				WATER		1	.0040000		•	. 004	. 004	89/01/19 89/01/19
					K	13	11.26900	60.44200	7.774500	20.00	.50	78/11/08 88/01/21
					TOT	14	10.46500	64.85800	8.053400	20.00	. 004	78/11/08 89/01/19
39337	ALPHABHC		TOTUG/L	WATER	K	9	.0243330	.0005942	.0243770	.050	.002	83/11/09 89/01/19
39338	BETA BHC		TOTUG/L	WATER	K	9	.0260000	.0005280	.0229780	.050	.002	83/11/09 89/01/19
39340	GAMMABHC	LINDANE	TOT.UG/L	WATER	K K K K	14	.5971400	. 2335000	.4832200	1.000	.010	77/07/13 85/10/16
	GBHC-MUD		DRYUG/KG	BOTTOM	K	1	10.00000			10.00	10.00	91/08/13 91/08/13
•••				WATER	K	10	12.65000	69.55800	8.340200	20.00	.50	78/11/08 84/12/12
39350	CHLRDANE	TECHSMET	TOT UG/L	WATER		19	.5115800	.1909800	.4370100	1.000	.010	77/07/13 89/01/19
39351	CDANEDRY	TECHSMET	MUDUG/KG	BOTTOM	K	1	100.0000			100.00	100.00	91/08/13 91/08/13
				WATER		1	270.0000			270.00	270.00	80/05/14 80/05/14
					K	13	38.11600	1486.500	38.55600	100.00	.01	78/11/08 89/01/19
					TOT	14		5212.900		270.00	. 01	78/11/08 89/01/19
39360	מממ	WHL SMPL	UG/L	WATER	K	19	.4439000	. 2381400	.4880000	1.000	.002	77/07/13 89/01/19
39363	DDD	MUD	UG/KG	WATER					7.778200	20.00	9.00	83/05/11 84/05/22
					K	12	12.12500	60.09200	7.751900	20.00	.002	78/11/08 89/01/19
					TOT	14			7.499700	20.00	.002	78/11/08 89/01/19
39365	DDE	WHL SMPL	UG/L	WATER		3	.0103330	.0000053	.0023094	.013	. 009	89/01/19 89/01/19
					K	17		. 2406300		1.000	.010	77/07/13 88/01/21
					TOT	20		. 2342700		1.000	.009	77/07/13 89/01/19
39368	DOE	MUD	UG/KG	WATER		3			26.26900	50.00	.01	83/05/11 89/01/19
					K				7.075900	20.00	.50	78/11/08 88/01/21
					TOT	14	14.75100	153.8500	12.40400		. 01	78/11/08 89/01/19
39370	DDT	WHL SMPL	UG/L	WATER	K	19			.4778700	1.000	.002	77/07/13 89/01/19
39373	DDT	MUD	UG/KG	WATER		1	5.000000			5.00	5.00	83/05/11 83/05/11
					K				9.633400		.002	78/11/08 89/01/19
					TOT	14	16.46500	96.55200	9.826100	30.00	.002	78/11/08 89/01/19

PAGE:

48

/TYPA/AMBNT/ESTURY

HUNBCC 33 43 36.0 118 04 25.0 2 ENTRANCE OF BOLSA CHICA CHANNEL 06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN HUNTINGTON HARBOUR 21CAOCFC 770210 140700

0999 FEET DEPT	Η
----------------	---

	PARAMETER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MUMINIM	BEG DATE END DATE
39380	DIELDRIN	TOTUG/L	WATER		1	.0110000			.011	.011	89/01/19 89/01/19
				K	18	.4684500	.2400200	. 4899200	1.000	.002	77/07/13 89/01/19
				TOT	19	.4443700	.2377000	.4875500	1.000	.002	77/07/13 89/01/19
39381	DIELDRIN	DISUG/L	WATER	K	1	20.00000			20.000	20.000	80/05/14 80/05/14
39383	DIELDRIN SEDUG/KG	DRY WGT	BOTTOM	K	1	10.00000			10.00	10.00	91/08/13 91/08/13
			WATER	K	14	11.17900	59.75100	7.729900	20.00	.002	78/11/08 89/01/19
39390	ENDRIN	TOT UG/L	WATER	K	. 19	.4545300	.2297200	.4793000	1.000	.003	77/07/13 89/01/19
39393	ENDRIN SEDUG/KG	DRY WGT	BOTTOM	K	1	20.00000			20.00	20.00	91/08/13 91/08/13
			WATER	ĸ	13	15.07700	80.90300	8.994600	30.00	.003	79/05/10 89/01/19
39400	TOXAPHEN	TOTUG/L	WATER	K	19	.7263200	.1528800	.3910000	1.000	. 050	77/07/13 89/01/19
39403	TOXAPHEN SEDUG/KG	DRY WGT	BOTTOM	K	1	2000.000			2000.00	2000.00	91/08/13 91/08/13
			WATER	K K K	14	129.6800	35129.00	187.4300	500.00	.05	78/11/08 89/01/19
39410	HEPTCHLR	TOTUG/L	WATER	K	20	.4219500	.2352400	.4850100	1.000	.003	77/07/13 89/01/19
39413	HEPTCHLR SEDUG/KG	DRY WGT	BOTTOM	K	1	10.00000			10.00	10.00	91/08/13 91/08/13
			WATER	K	14	11.17900	59.74900	7.729800	20.00	.003	78/11/08 89/01/19
39420	HPCHLREP	TOTUG/L	WATER	K	19	.4439000	.2381400	.4880000	1.000	.002	77/07/13 89/01/19
39423	HPCHLREP SEDUG/KG	DRY WGT	BOTTOM	K K K	1	10.00000			10.00	10.00	91/08/13 91/08/13
			WATER	K	14	11.17900	59.75100	7.729900	20.00	.002	78/11/08 89/01/19
39480	MTHXYCLR WHL SMPL	UG/L	WATER	K	17	.6129400	.1870900	.4325300	1.000	.010	79/05/10 89/01/19
	MTHXYCLR MUD DRY	UG/KG	BOTTOM	K	1	70.00000			70.00	70.00	91/08/13 91/08/13
			WATER	K	10	43.10100	1724.900	41.53200	100.00	.01	79/10/10 89/01/19
39488	PCB-1221	TOTUG/L	WATER	K	12	.6633300	.1810600	.4255100	1.000	.030	81/11/12 89/01/19
39491	PCB-1221 SEDUG/KG	DRY WGT	BOTTOM	K	1	100.0000			100.00	100.00	91/08/13 91/08/13
			WATER	K	9	150.0000	21049.00	145.0800	300.00	. 03	81/11/12 89/01/19
39492	PCB-1232	TOTUG/L	WATER	K	19	.7400000	.1598600	.3998200	1.000	.030	77/07/13 89/01/19
39495	PCB-1232 SEDUG/KG	DRY WGT	BOTTOM	K	1	100.0000			100.00	100.00	91/08/13 91/08/13
			WATER	K	14	101.1100	17616.00	132.7200	300.00	.03	78/11/08 89/01/19
39496	PCB-1242	TOTUG/L		K	19	.7400000	.1598600	.3998200	1.000	.030	77/07/13 89/01/19
39499	PCB-1242 SEDUG/KG	DRY WGT	BOTTOM	K	1	100.0000			100.00	100.00	91/08/13 91/08/13
			WATER	K	14	101.1100	17616.00	132.7200		.03	78/11/08 89/01/19
39500	PCB-1248	TOTUG/L	WATER	K	12	.6633300	.1810600	.4255100	1.000	.030	81/11/12 89/01/19
39503	PCB-1248 SEDUG/KG	DRY WGT	BOTTOM	: К К К	1	100.0000			100.00	100.00	91/08/13 91/08/13
			WATER	K	8	166.2500	21340.00	146.0800	300.00	.03	82/06/03 89/01/19
39504	PCB-1254	TOTUG/L	WATER	K	20	.7045000	.1766500	.4203000		.030	77/07/13 89/01/19
39507	PCB-1254 SEDUG/KG	DRY WGT	BOTTOM	K	1	100.0000			100.00	100.00	91/08/13 91/08/13
			WATER	K				134.8200			79/05/10 89/01/19
39508	PCB-1260	TOTUG/L	WATER	K	19	.7400000	.1598600	.3998200			77/07/13 89/01/19
39511	PCB-1260 SEDUG/KG	DRY WGT		ĸ		100.0000			100.00		91/08/13 91/08/13
			WATER	K	14	101.1100	17616.00	132.7200	300.00	.03	78/11/08 89/01/19

PAGE:

49

/TYPA/AMBNT/ESTURY

HUNBCC BOUNDER SALE FOR SALE HUNTINGTON HARBOUR 21CAOCFC 770210

0999 FEET DEPTH

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
39514	PCB-1016	SEDUG/KG	DRY WGT	BOTTOM	K	1	100.0000			100.00	100.00	91/08/13 91/08/13
				WATER	K	8	166.2500	21340.00	146.0800	300.00	.03	81/11/12 89/01/19
39530	MALATHN	WHL SMPL	UG/L	WATER	K					1.000	. 050	79/05/10 89/01/19
39531	MALATHN	MUD	UG/KG	BOTTOM	K	1	30.00000			30.00	30.00	91/08/13 91/08/13
				WATER	K	10	129.5100	94890.00	308.0400	1000.00	. 05	79/05/10 89/01/19
39533	MALATHN	SUS FRAC	UG/L	WATER	K	ì	.0500000			.050	. 050	89/01/19 89/01/19
	PARATHN	WHL SMPL	UG/L	WATER	K	14	1.439300	6.231200	2.496300	10.000	. 050	79/05/10 89/01/19
	PARATHN	MUD	UG/KG	BOTTOM	K	i	30.00000			30.00	30.00	91/08/13 91/08/13
				WATER	K		1029.500	9935900	3152.100		. 05	79/05/10 89/01/19
39730	2,4-D	WHL SMPL	UG/L	WATER	K		3.175000			10.000	.050	81/11/12 89/01/19
39731	2.4-D	MUD	UG/KG	BOTTOM	K		5000.000			5000.00	5000.00	91/08/13 91/08/13
				WATER	K	10	111.0100	20209.00	142.1600	500.00	. 05	81/11/12 89/01/19
39760	SILVEX	WHL SMPL	UG/L	WATER	K K		2.743300			10.000	.010	81/11/12 89/01/19
39761	SILVEX	MUD	UG/KG	BOTTOM	K	ī	2000.000			2000.00	2000.00	91/08/13 91/08/13
				WATER	K	10	59.00100	2032.100	45.07900	100.00	. 01	81/11/12 89/01/19
39780	DICOFOL	WHL SMPL	UG/L	WATER	ĸ	6	.7000000	.2160000	.4647600	1.000	.100	77/07/13 80/10/15
39782	LINDANE	WHL SMPL	UG/L	WATER	K	17	.4843500	.2513900	.5013800	1.000	.002	79/05/10 89/01/19
39783	LINDANE	MUD DRY	UG/KG	WATER	K	13	12,00000	54.49600	7.382200	20.00	.002	79/05/10 89/01/19
	NITRATE	TOT-NO3	MG/L	WATER		69	3.619300	40.85400	6.391700	50.0	. 1	76/11/22 90/04/12
					K	34	.3670600	.0244340	.1563100	1.0	. 1	76/12/21 91/08/13
					TOT		2.545700			50.0	. 1	76/11/22 91/08/13
71885	IRON	FE	UG/L	WATER		3	2013.300	10755000	3279.500	5800.00	90.00	77/07/13 86/10/15
71900	MERCURY	HG, TOTAL	UG/L	WATER		7	3.700000	18.41700	4.291500	13.0	. 4	77/07/13 83/05/11
					K	13	.8923100	.2174400	.4663000	2.0	. 2	79/10/10 89/07/13
					TOT	20	1.875000	7.840900	2.800200	13.0	. 2	77/07/13 89/07/13
71921	MERCURY	SEDMG/KG	DRY WGT	WATER		10	.1813000	.0664970	.2578700	. 9	.03	78/11/08 85/10/16
					K	10	.2880000	.0229510	.1515000	. 4	. 02	78/04/12 89/07/13
					TOT		.2346500			. 9	. 02	78/04/12 89/07/13
74041	WQF	SAMPLE	UPDATED	BOTTOM		1	920110.0			920109	920109	91/08/13 91/08/13
				WATER		210	887990.0	1479E+05	12163.00	920109	860715	85/08/13 91/08/13
78453	PCB-1262	SED DRY	WT UG/KG	BOTTOM	K	1	100.0000			100.000	100.000	91/08/13 91/08/13
78828	BZO(GHI)	PERYLENE	SEDUG/KG	BOTTOM	K	1	.2000000			.20	. 20	91/08/13 91/08/13
80101	CARBON	DRY WGT	MG/KG	WATER		3	11757.00	2016E+05	14200.00	28000.0	1700.0	83/11/09 85/10/16
81886	PERTHANE	SED DRY	WGTUG/KG	BOTTOM	K	1	70000.00			70000.00	70000.00	91/08/13 91/08/13
				WATER	K	6	80.00100	12920.00	113.6700	300.000	.003	82/11/10 89/01/19
82007	% SAND	IN SED	DRY WGT	WATER		7	59.31400	639.2300	25.28300	94.00	14.20	82/06/03 87/05/21
82008	SEDIMENT		SILT	WATER		7	33.37200	641.9700	25.33700	80.60	2.00	82/06/03 87/05/21
82009	SEDIMENT	PARTSIZE	CLAY	WATER		7	7.314300	14.42500	3.798000	13.00	2.00	82/06/03 87/05/21
82302	RADON222	TOT.CT.	ER PC/L	WATER		1	1.000000			1.00	1.00	81/05/20 81/05/20
	-											

/TYPA/AMBNT/ESTURY

PGM=INVENT

PAGE:

50

HUNBCC

33 43 36.0 118 04 25.0 2 ENTRANCE OF BOLSA CHICA CHANNEL 06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700

HUNTINGTON HARBOUR

21CAOCFC 770210 HQ 18070201001 0010.180 OFF

0999 FEET DEPTH

PARAMETER MEDIUM RMK NUMBER MEAN VARIANCE STAN DEV MAXIMUM MINIMUM BEG DATE END DATE 82303 RADON222 TOTAL PC/L WATER 1 1.000000 1.00 1.00 81/05/20 81/05/20

PAGE:

51

/TYPA/AMBNT/ESTURY

HUNHAR
33 43 39.0 118 06 01.0 2
AT HARBOR ENTRANCE - MIDCHANNEL
ORANGE
ORANGE 06059 CALIFORNIA SANTA ANA RIVER BASIN 140700 HUNTINGTON HARBOUR

21CAOCFC 770222 0999 FEET DEPTH

18070301

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
00010	WATER	TEMP	CENT	WATER		134	18.36200	6.871900	2.621400	25.6	12.4	76/11/22 90/04/12
00011	WATER	TEMP	FAHN	WATER	\$	134	65.05000	22.37700	4.730400	78.1	54.3	76/11/22 90/04/12
00035	WIND	VELOCITY	MPH	WATER		58	3.810400	14.79700	3.846700	15.0	.0	79/02/15 88/05/12
00000					K	i	1.000000	-		1.0	1.0	87/02/11 87/02/11
					TOT	59	3.762700	14.67600	3.830900	15.0	. 0	79/02/15 88/05/12
00036	WIND	DIR.FROM	NORTH-0	WATER			202.9800			315	0	79/03/14 88/06/16
00061	STREAM	FLOW.	INST-CFS				1100.000			1100	1100	87/05/21 87/05/21
00065	STREAM	STAGE	FEET	WATER		94	3.343100	2.952100	1.718200	6.80	.00	76/11/22 88/05/12
00067	TIDE	STAGE	CODE	WATER		92	3351.300	4342800	2083.900	7510	1010	76/11/22 88/05/12
00076	TURB						1.102000		.9471900	5.7	. 2	76/11/22 90/05/23
00078	TRANSP	SECCHI	METERS	WATER		22	2.104600	.2071300	.4551100	3.00	1.00	84/08/22 88/06/16
		FIELD	MICROMHO				47782.00			56300	34500	77/01/27 90/04/12
	CNDUCTVY	AT 25C	MICROMHO				45244.00			67000	33900	76/11/22 90/05/23
00116	INTNSVE	SURVEY	IDENT	WATER		2	730600.0	.0000000	.0000000	730601	730601	78/02/16 79/01/10
00300	DO	00.1121	MG/L	WATER		130	8.976600	2.252900	1.501000	13.2	5.8	76/12/21 90/04/12
00000					L		15.00000			15.0	15.0	76/11/22 76/11/22
					TOT			2.512500	1.585100	15.0	5.8	76/11/22 90/04/12
00301	DO	SATUR	PERCENT	WATER	\$				17.97800	157.9	58.0	76/11/22 90/04/12
00310	BOD	5 DAY	MG/L	WATER	•				9.504400	21.0	2.0	78/04/12 79/10/10
00335	COO	LOWLEVEL	MG/L	WATER					216.3600	750.0	20.0	77/06/08 79/06/13
50000	000				K		1.000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.0	1.0	78/01/12 78/01/12
					TOT			47770.00	218.5600	750.0	1.0	77/06/08 79/06/13
00400	₽H		su	WATER					.3084200	9.90	7.40	76/11/22 90/04/12
00403	PH	LAB	รีน	WATER					. 2660300	8.4	7.0	76/11/22 90/05/23
	RESIDUE	TOT NELT	MG/L	WATER		74	49.90500	13438.00	115.9200	710	. 8	76/11/22 90/05/23
00000	WEOZDGE				K				1.789400			81/05/20 90/04/12
					TOT				108.0600			76/11/22 90/05/23
00535	RESIDUE	VOL NFLT	MG/L	WATER					39.26700			77/04/13 90/05/23
00000	MEGEDOL.				K	17			2.201700		. 5	77/08/10 90/04/12
					TOT	81			35.80200		. 4	77/04/13 90/05/23
00550	OIL-GRSE	TOT-SXLT	MG/L	WATER	, .	8			7.425900		1.2	78/04/12 82/11/10
00000	OZE-GROE	IOI-OXEI			K	ĭ	.5000000			. 5		79/05/10 79/05/10
					TOT	وَ		50.92700	7.136300	23.0	. 5	78/04/12 82/11/10
00610	NH3+NH4-	N TOTAL	MG/L	WATER		57			.8138100			76/11/22 90/05/23
00010	11110 -11114-	IT TOTAL			K	30			.0730300			76/12/21 85/05/22
					TOT	87			.6815800			76/11/22 90/05/23
00612	UN-IONZD	NH3-N	MG/L	WATER	\$	79			.0334530			76/11/22 90/04/12
	UN-IONZD	NH3-NH3	MG/L	WATER	\$	79			.0406750			76/11/22 90/04/12
	TOT KJEL	N	MG/L	WATER	·				1.134800			76/11/22 90/05/23
00010	. J. NOEL	,,	111-011- 100			. •						

PAGE:

52

/TYPA/AMBNT/ESTURY

HUNHAR
33 43 39.0 118 06 01.0 2
AT HARBOR ENTRANCE - MIDCHANNEL
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
HUNTINGTON HARBOUR
21CAOCFC 770222 18070301
0999 FEET DEPTH

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE	END DATE
00625	TOT KJEL	N	MG/L	WATER	K	8	.1750000	.0192860	.1388700	.500	. 100	78/12/13	
00625	TOT KJEL	N	MG/L	WATER	TOT	87	.9089600	1.224800	1.106700	8.700	.020	76/11/22	90/05/23
00650	T P04	PO4	MG/L	WATER		65	.3187700	.1435200	.3788400	2.54	.06	76/11/22	90/05/23
					K	23			.2074000	.50	.01	77/08/10	89/07/13
					TOT	88		.1185400		2.54	.01	76/11/22	90/05/23
00955	SILICA	DISOLVED	MG/L	WATER			2.571400			30.0	. 1	77/04/13	
					K	24		.1372300		1.0	. 1	76/11/22	
					TOT	45	1.446700			30.0	. 1	76/11/22	
01002	ARSENIC	AS, TOT	UG/L	WATER		2	20.50000			30	11	82/06/03	
					K		7.083300			16	2		89/01/19
					TOT		9.000000	53.07700	7.285400	30	2		89/01/19
01020		B,DISS	UG/L	WATER		_	7400.000			7400			78/08/09
01027	CADMIUM	CD, TOT	UG/L	WATER	• •		17.35300			86		76/12/21	
					K		6.466700			20			89/01/19
01024	CUDOMENIA	0D TOT		WATES	TOT		12.25000			86			89/01/19
01034	CHROMIUM	CR, IUI	UG/L	WATER	V		27.23100			140			88/01/21
					K TOT		14.50000			60			90/04/12
01040	000000	011 TOT	110 /1	WATED	101		40.86100			140 100			90/04/12 88/10/14
01042	COPPER	CU, TOT	UG/L	WATER	κ					70			90/04/12
					τοτ		31.87600			100			90/04/12
01045	IRON	FE.TOT	UG/L	WATER	101	80	690.0000	/50.0/00	27.54600	690			86/10/15
01043		PB, TOT	UG/L	WATER		36	12.25000	62 97000	7 020600	36			90/04/12
01031	LEMU	PB, 101	ua/L	MAIER	K					200			89/04/19
					TOT	82			30.21000	200			90/04/12
01092	ZTNC	ZN. TOT	UG/L	WATER	101	56			28.13200	130			89/01/19
01072	21110	211, 101	au, L	110 I FIX	K	28			26.62200	150			90/05/23
					τοτ	84			28.50100	150			90/05/23
01102	TTN	SN, TOT	UG/L	WATER	K	2			3443.600	5000			86/10/15
	SELENIUM		ug/L	WATER	"	5			36.06300	59			82/06/03
••••	OEEE/120111	02,			K	10	7.500000			20			89/07/13
					TOT		11.83300			59			89/07/13
01501	ALPHA	TOTAL	PC/L	WATER	· - ·	1	.0070000		•••••	.007			89/03/23
03501	BETA	TOTAL	PC/L	WATER		ī	.0930000			.09			89/03/23
	PHENOLS	TOTAL	UG/L	WATER	K	10	33.00000	334.4500	18.28800	50			82/11/10
	DELTABHO		TOTUG/L		Ë		1.000000			1.000			82/11/10
	DIETHYLP	HTHALATE			ĸ		1.000000			1.000			82/11/10
	DIETHYLP				Ŕ		1.000000			1.000			82/11/10
	ENDSULSE		TOTUG/L		K	i	1.000000			1.000	1.000	82/11/10	82/11/10
·			- ·· · -	_		_				-			

PAGE:

53

/TYPA/AMBNT/ESTURY

HUNHAR
33 43 39.0 118 06 01.0 2
AT HARBOR ENTRANCE - MIDCHANNEL
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
HUNTINGTON HARBOUR
21CAOCFC 770222 18070301
0999 FEET DEPTH

	PARA	METER		MEDIUM	I RMK	NUMBER	MEAN	VARIANCE	STAN DEV		MINIMUM	BEG DATE	
34356	B-ENDO	SULFAN	TOTWUG/L	WATER	K	1	1.000000			1.000	1.000	82/11/10	
	A-ENDO	SULFAN	TOTWUG/L		K	1	1.000000			1.000	1.000	82/11/10	
34671	PCB	1016	TOTWUG/L		K	3	1.000000	.0000000	.0000000	1.000	1.000	81/11/12	
38260	MBAS		MG/L	WATER		4	.0650000	.0061667	.0785280	.18	.01	80/10/15	82/11/10
•					K	3	.0400000	.0027000	.0519620	.10	.01	79/05/10	82/06/03
					TOT	7	.0542860	.0041619	.0645130	.18	.01	79/05/10	82/11/10
39034	PERTHANE	WHL SMPL	UG/L	WATER	K	2	1.000000	.0000000	.0000000	1.000	1.000	81/11/12	82/11/10
	SIMAZINE		(UG/L)	WATER	K	1	10.00000			10	10	82/11/10	82/11/10
	ALDRIN		TOT UG/L		K K K	4	.7750000	.2025000	.4500000	1.000	.100	77/07/13	82/11/10
	GAMMABHC	LINDANE	TOT. UG/L		K	4	.7750000	.2025000	.4500000	1.000	.100	77/07/13	82/11/10
	CHLRDANE				K	4	.7750000	.2025000	.4500000	1.000	.100	77/07/13	82/11/10
39360	DDD	WHL SMPL	UG/L	WATER	K	4	.7750000	. 2025000	.4500000	1.000	.100		82/11/10
39365	DDE	WHL SMPL	UG/L	WATER	K	4	.7750000	.2025000	.4500000	1.000	.100		82/11/10
39370	DDT	WHL SMPL	UG/L	WATER	K K	4	.7750000	. 2025000	.4500000	1.000			82/11/10
	DIELDRIN		TOTUG/L	WATER	K	4	.7750000	.2025000	.4500000	1.000			82/11/10
	ENDRIN		TOT UG/L		K	4	.7750000	.2025000	.4500000	1.000	.100		82/11/10
	TOXAPHEN		TOTUG/L		K	4	.7750000	. 2025000	.4500000	1.000	.100		82/11/10
	HEPTCHLR		TOTUG/L	WATER	K K	4	.7750000	.2025000	.4500000	1.000	.100	77/07/13	82/11/10
	HPCHLREP		TOTUG/L	WATER	K	4	.7750000	. 2025000	.4500000	1.000			82/11/10
	MTHXYCLR	WHL SMPL	UG/L	WATER	K	3	1.000000	.0000000	.0000000				82/11/10
	PCB-1221	****	TOTUG/L	WATER	K	3	1.000000	.0000000	.0000000	1.000			82/11/10
	PCB-1232		TOTUG/L	WATER	K	4	1.000000	.0000000					82/11/10
	PCB-1242		TOTUG/L		K	4	1.000000	.0000000	.0000000	1.000	1.000	77/07/13	82/11/10
	PCB-1248		TOTUG/L		K K K	3	1.000000	.0000000	.0000000	1.000			82/11/10
	PCB-1254		TOTUG/L		K	4	1.000000		.0000000		1.000	77/07/13	82/11/10
	PCB-1260		TOTUG/L		K	4	1.000000	.0000000	.0000000	1.000	1.000	77/07/13	82/11/10
	MALATHN	WHL SMPL	UG/L	WATER	K	1	1.000000			1.000	1.000		82/11/10
	PARATHN	WHL SMPL	ÜG/L	WATER	K	1	1.000000			1.000	1.000	82/11/10	82/11/10
39730		WHL SMPL	UG/L	WATER	K K	3	10.00000	.0000000	.0000000	10.000	10.000	81/11/12	82/11/10
39760		WHL SMPL	UG/L	WATER	K	3	10.00000	.0000000	.0000000	10.000	10.000	81/11/12	82/11/10
	DICOFOL	WHL SMPL	UG/L	WATER	K	1	.1000000			.100	.100		77/07/13
	LINDANE	WHL SMPL	UG/L	WATER	K	3	1.000000	.0000000	.0000000	1.000	1.000	81/11/12	82/11/10
	NITRATE	TOT-NO3	MG/L	WATER		50	2.295800	6.229100	2.495800				90/04/12
					K	38	.3779000	.0229150	.1513800				90/05/23
					TOT	88	1.467600						90/05/23
71885	IRON	FE	UG/L	WATER		2		204800.0					86/10/15
	MERCURY	HG, TOTAL		WATER		6		.9266700					83/05/11
			_		K		1.090000						89/07/13
					TOT	16	1.106300	.6952900	.8338400	3.0	. 2	77/07/13	89/07/13

PGM=INVENT

PAGE:

54

/TYPA/AMBNT/ESTURY

HUNHAR 33 43 39.0 118 06 01.0 2 AT HARBOR ENTRANCE - MIDCHANNEL 06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700 HUNTINGTON HARBOUR 21CAOCFC 770222 0999 FEET DEPTH

18070301

NUMBER MEAN VARIANCE STAN DEV MAXIMUM MINIMUM BEG DATE END DATE MEDIUM RMK PARAMETER 64 888040.0 78826000 8878.400 900821 860729 85/07/25 90/05/23 UPDATED WATER 74041 SAMPLE

PAGE:

55

/TYPA/AMBNT/LAKE

MSPLA2
33 45 44.0 117 56 26.0 2
SOUTH SIDE OF PHASE TWO LAKE
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
MILE SQUARE PARK
21CAOCFC 770210 18070201
0999 FEET DEPTH

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
00010	WATER	TEMP	CENT	WATER		200	20.71300	24.12600	4.911800	29.5	10.0	76/11/11 90/04/03
00011	WATER	TEMP	FAHN	WATER	\$	200	69.28100	78.36700	8.852500	85.1	50.0	76/11/11 90/04/03
00076	TURB	TRBIDMTR	HACH FTU		•	71	13.73600	4426.300	66.53000	560.0	. 3	76/11/11 88/07/18
00078	TRANSP	SECCHI	METERS	WATER				.2940300		2.00	.50	85/07/17 88/06/21
	CNDUCTVY		MICROMHO					6778.700		700	4	77/01/26 90/04/03
	CNDUCTVY	AT 25C	MICROMHO					17369.00		1100	300	76/11/11 88/07/18
00300	DO	M1 230	MG/L	WATER				7.250800		18.3	. 7	76/11/11 90/04/03
00300	טט		MG/L	MAIER	L			.0000000		15.0	15.0	86/06/04 89/03/22
					TOT			7.511200		18.3	.7	76/11/11 90/04/03
		0.47140	DEBOENT	WATER	\$			1036.800		193.6	7.1	76/11/11 90/04/03
00301	DO	SATUR	PERCENT	WATER	•			725.2700		122.0	8.0	77/06/07 79/10/24
00335	COD	LOWLEVEL	MG/L	WATER				725.2700	26.93100		3.0	78/09/12 78/09/12
					K		3.000000	760 0500	07 50400	3.0		
					TOT			760.8500		122.0	3.0	77/06/07 79/10/24
00400	PH		su	WATER				.3335900		10.20	7.00	76/11/11 90/04/03
00403	PH	LAB	su	WATER				.2942000		9.4	6.5	76/11/11 88/07/18
00405	C02		MG/L	WATER				539.0200		97.0	.0	76/11/11 86/10/16
00440	HCO3 ION	HCO3	MG/L	WATER				1493.200		210	77	76/11/11 86/10/16
00445	CO3 ION	CO3	MG/L	WATER		2		.0000000	.0000000	0	0	85/11/19 86/10/16
00515	RESIDUE	DISS-105	C MG/L	WATER		1	200.0000			200	200	86/10/16 86/10/16
00530	RESIDUE	TOT NELT	MG/L	WATER		61	32.38700	9174.200	95.78200	750	. 4	76/11/11 88/07/18
					K	6	4.333300	2.666700	1.633000	5	1	85/11/19 88/05/09
					ТОТ	67	29.87500	8405.600	91.68200	750	. 4	76/11/11 88/07/18
00535	RESIDUE	VOL NELT	MG/L	WATER		51	27.15100	9483.600	97.38400	700	. 2	77/05/10 88/07/18
					K	12	2.425000	5.222100	2.285200	5	. 1	80/03/18 88/05/09
					TOT	63	22.44100	7744.800	88.00500	700	. 1	77/05/10 88/07/18
00610	NH3+NH4-	N TOTAL	MG/L	WATER	,			1.223400		7.300	.030	76/11/11 88/01/25
00010	11110 111114-	II IUIAL	m	**********	K	24		.0127540		. 500	.100	77/02/08 88/07/18
					TOT	69		.8349700		7.300	.030	76/11/11 88/07/18
00612	UN-IONZD	NH3-N	MG/L	WATER		60		.0044447		. 452	.0006	76/11/11 87/03/10
	UN-IONZD	NH3-NH3	MG/L	WATER	š	60		.0065711		.549	.0008	76/11/11 87/03/10
			MG/L	WATER	•			5.207300		17.000	. 200	76/11/11 89/06/20
00023	TOT KJEL	N	MG/L	MAIER	K	2		.0450000		.500	. 200	79/10/24 83/08/19
						-		5.116700		17.000	. 200	76/11/11 89/06/20
			***	WATER	TOT			8.767500		23.00	.02	76/11/11 87/03/20
00650	T P04	PO4	MG/L	WATER		11						77/11/15 88/07/18
					K	10			.1692000		. 06	
					TO T	69			2.742500		.02	76/11/11 88/07/18
	PHOS MUD	DRY WGT	MG/KG-P	WATER				391240.0		1500.0	18.0	83/05/12 85/11/19
00680	T ORG C	С	MG/L	WATER					209.3800	520.0	3.3	83/04/21 86/10/16
					K	1	3.000000			3.0	3.0	84/05/10 84/05/10

PAGE:

56

/TYPA/AMBNT/LAKE

MSPLA2
33 43 44.0 117 56 26.0 2
SOUTH SIDE OF PHASE TWO LAKE
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
MILE SQUARE PARK
21CAOCFC 770210 18070201
0999 FEET DEPTH

		METER		MEDIUM	RMK	NUMBER		VARIANCE		MAXIMUM	MINIMUM	BEG DATE	END DATE
00680	T ORG C	C	MG/L	WATER	TOT	7	79.87100	37681.00	194.1200	520.0	3.0	83/04/21	86/10/16
00747	SULFIDE	IN SED.	MG/KG	WATER		1	2.000000			2.00	2.00	83/05/12	83/05/12
					K	4	1.000000	.0000000	.0000000	1.00	1.00	83/11/10	85/11/19
					TOT	5	1.200000	.2000000	.4472200	2.00	1.00	83/05/12	
00900	TOT HARD	CACO3	MG/L	WATER		15	158.3300	3140.700	56.04200	242	35	76/11/11	86/10/16
00915	CALCIUM .	CA, DISS	MG/L	WATER		16	54.37500	1855.300	43.07300	207.0	23.0		86/10/16
00925	MGNSIUM	MG, DISS	MG/L	WATER		16	13.51900	16.44200	4.054800	17.8	7.8		86/10/16
00930	SODIUM	NA, DISS	MG/L	WATER		16	43.43800	72.92900	8.539900	63.00	19.00	76/11/11	86/10/16
00935	PTSSIUM	K, DISS	MG/L	WATER		16	3.362500	.5665300	.7526800	5.60	2.40		86/10/16
00940	CHLORIDE	TOTAL	MG/L	WATER		16	43.93800	302.7300	17.39900	75	18		86/10/16
	SULFATE	SO4-TOT	MG/L	WATER		16	76.65600	969.2300	31.13200	107	19		86/10/16
00950	FLUORIDE	F.DISS	MG/L	WATER		15	.6886700	.0788410	.2807900	1.50	. 40	76/11/11	86/10/16
00955	SILICA	DISOLVED	MG/L	WATER				95.52900		56.0	. 6		86/10/16
	ARSENIC	AS. TOT	UG/L	WATER		2	4.000000	2.000000	1.414200	5	3		81/05/19
01020	BORON	B.DISS	UG/L	WATER		15	233.3300	37238.00	192.9700	750	100		85/11/19
		•			K	1	50.00000			50	50		86/10/16
					TOT	16	221.8800	36856.00	191.9800	750	50		86/10/16
01027	CADMIUM	CD. TOT	UG/L	WATER	-	3	3.000000	3.000000	1.732100	5	2		81/05/19
		,			K			3.583300		4	. 5		84/11/07
					TOT	6	2.416700	3.041700	1.744000	5	. 5		84/11/07
01029	CHROMIUM	SEDMG/KG	DRY WGT	WATER			3.300000			3.30	3.30		83/08/19
01034	CHROMIUM	CR. TOT	UG/L	WATER		3	22.66700	310.3300	17.61600	37	3		81/03/17
					K			1.166700		5	2		88/04/11
					TOT	13	8.692300	116.0700	10.77300	37	2	77/04/12	88/04/11
01042	COPPER	CU, TOT	UG/L	WATER		16	10.09400	79.80700	8.933500	29	ï		88/04/11
		•			K	7	6.428600	5.952400	2.439800	10	5		88/01/25
					TOT	23	8.978300	59.01100	7.681900	. 29	1	76/11/11	88/04/11
01043	COPPER	SEDMG/KG	DRY WGT	WATER		6	7.650000	53.20300	7.294000	22.00	3.30		85/11/19
01045	IRON	FE.TOT	UG/L	WATER		i	250.0000			250	250	84/11/07	84/11/07
01051	LEAD	PB. TOT	UG/L	WATER		7	33.28600	498.2400	22.32100	74	12	77/04/12	81/03/17
		. ,			K	10	8.000000	40.44500	6.359600	24	3	77/08/09	88/04/11
					TOT	17	18.41200	374.1300	19.34300	74	3	77/04/12	88/04/11
01052	LEAD	SEDMG/KG	DRY WGT	WATER	K	1	1.400000			1.40	1.40		83/08/19
01055	MANGNESE	MN	UG/L	WATER	K	1	10.00000			10.0	10.0		77/10/11
01092	ZINC	ZN, TOT	ug/L	WATER		6	32.83300	760.9700	27.58600	81	10		88/04/11
		- ·			K	6	15.50000	49.50000	7.035600	20	5		88/01/25
					TOT	12	24.16700	450.3300	21.22100	81	5		88/04/11
01093	ZINC	SEDMG/KG	DRY WGT	WATER		1	15.00000			15.00	15.00	83/08/19	83/08/19
01147	SELENIUM	SE, TOT	UG/L	WATER		1	20.00000			20	20		81/05/19

PGM=INVENT

PAGE:

57

/TYPA/AMBNT/LAKE

MSPLA2 33 43 44.0 117 56 26.0 2 SOUTH SIDE OF PHASE TWO LAKE 06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN MILE SQUARE PARK 21CAOCFC 770210 0999 FEET DEPTH 140700 18070201

PARAMETER		MEDIUM		NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE EN	
01147 SELENIUM SE, TOT	UG/L	WATER	K	1	2.000000			2	2	80/10/14 80	
01147 SELENIUM SE.TOT	UG/L	WATER	TOT	2	11.00000	162.0000	12.72800	20	2	80/10/14 81	./05/19
31507 TOT COLI MPN COM		WATER		1	2800.000			2800	2800	79/05/06 79	//05/06
32730 PHENOLS TOTAL	UG/L	WATER	. K	1	50.00000			50	50	77/07/12 77	//07/12
46570 CAL HARD CA MG	MG/L	WATER	\$	16	191.4500	11422.00	106.8700	557	92	76/11/11 86	5/10/16
70301 DISS SOL SUM	MG/L	WATER	•		328.6700			431	210	76/11/11 85	5/11/19
71850 NITRATE TOT-NO3	MG/L	WATER			4.227900			17.0		76/11/11 86	
/1050 NITRATE TOT-NOS	MG/L	MMIER	K		.5511500			4.4	ii	78/05/09 88	
			TOT		2.822100			17.0	i	76/11/11 88	
			101	90		12.67200	3.339000	40.00		77/10/11 77	
71885 IRON FE	UG/L	WATER		Ī	40.00000						
71900 MERCURY HG, TOTA	_ UG/L	WATER	K		3.000000			5.0		80/10/14 84	
74041 WOF SAMPLE	UPDATED	WATER		102	881510.0	1784E+05	13357.00	900412	860717	85/10/23 90)/04/03
80101 CARBON DRY WGT	MG/KG	WATER		5	1413.200	955870.0	977.6900	2100.0	5.0	83/11/10 86	5/10/16
82007 % SAND IN SED	DRY WGT	WATER		1	97.00000			97.00	97.00	84/05/10 84	1/05/10
82008 SEDIMENT PARTSIZ		WATER		ī	.0000000			.00	.00	84/05/10 84	1/05/10
82009 SEDIMENT PARTSIZ		WATER		ī	3.000000			3.00	3.00	84/05/10 84	1/05/10

PGM=INVENT

PAGE:

58

/TYPA/AMBNT/STREAM

BCEC02 33 45 48.0 118 04 08.0 2 AT EDINGER

06059 CALIFORNIA SANTA ANA RIVER BASIN ORANGE 140792

BOLSA CHICA CHANNEL 21CAOCFC 18070201

0999 FEET DEPTH

PARAMETER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
00010 WATER TEM	P CENT	WATER	******		21.35700			24.0	19.0	73/04/06 73/10/02
00011 WATER TEM		WATER	\$	7	70.44300			75.2	66.2	73/04/06 73/10/02
00061 STREAM FLO			š	i	2.000000			2	2	73/08/20 73/08/20
00095 CNDUCTVY AT 2			Ţ	7		2671E+05	16346.00	51170	1600	73/04/06 73/10/02
00403 PH LAB	SU	WATER		7	8.185700			8.6	7.8	73/04/06 73/10/02
00440 HCO3 ION HCO		WATER		,		8.000000		157	153	73/05/08 73/06/04
00445 CO3 ION CO3		WATER		2		.0000000		10,	100	73/05/08 73/06/04
00530 RESIDUE TOT N		WATER		4		75.66700		37	17	73/07/09 73/10/02
00610 NH3+NH4- N TOT		WATER		7	.0000000	/3.00/00	0.030700	. 000	. 000	73/06/04 73/06/04
00010 141041414- 14 101	AL MG/L	MAIER	K	Ė	.1000000	0000000	.0000000	.100	.100	73/04/06 73/10/02
			TOT	7		.0014286		.100	.000	73/04/06 73/10/02
00010 1111 701170 11112		WATER	101	<u>'</u>		.0000307		.017	.000	73/04/06 73/10/02
00612 UN-IONZD NH3-		WATER	*	<u> </u>						
00619 UN-IONZD NH3-		WATER	•	7		.0000454		.021	.000	73/04/06 73/10/02
00625 TOT KJEL N	MG/L	WATER		5	1.280000	.8820000	. 9391500	2.900	.500	73/06/04 73/10/02
			_ K	1	.1000000			. 100	. 100	73/05/08 73/05/08
			TOT	6	1.083300			2.900	. 100	73/05/08 73/10/02
00650 T PO4 PO4		WATER		7		.0170810	.1307000	. 41	.10	73/04/06 73/10/02
00900 TOT HARD CACO		WATER		1	6270.000			6270	6270	73/06/04 73/06/04
00915 CALCIUM CA,DI		WATER		2	397.5000			401.0	394.0	73/05/08 73/06/04
00925 MGNSIUM MG,DI		WATER		2	1253.000			1285.0	1221.0	73/05/08 73/06/04
00930 SODIUM NA,DI		WATER		2			162.6300			73/05/08 73/06/04
00935 PTSSIUM K,DI		WATER			432.0000			500.00	364.00	73/05/08 73/06/04
00940 CHLORIDE TOT	AL MG/L	WATER		2	18745.00			19160	18330	73/05/08 73/06/04
00945 SULFATE S04-T	OT MG/L	WATER		2		450.0000		2642	2612	73/05/08 73/06/04
00950 FLUORIDE F,DI	SS MG/L	WATER		2	1.300000	.0200020	.1414300	1.40	1.20	73/05/08 73/06/04
00955 SILICA DISOL	VED MG/L	WATER		6	1.500000	.7000000	.8366600	3.0	1.0	73/04/06 73/10/02
•			K	1	1.000000			1.0	1.0	73/05/08 73/05/08
			TOT	7	1.428600	.6190500	.7868000	3.0	1.0	73/04/06 73/10/02
01002 ARSENIC AS, TO	T UG/L	WATER		1	1.000000			1	1	73/04/06 73/04/06
01020 BORON B.DJ	SS UG/L	WATER		2	4385.000	8448.000	91.91300	4450	4320	73/05/08 73/06/04
01027 CADMIUM CD.TO		WATER		1	170.0000			170	170	73/04/06 73/04/06
01051 LEAD PB.TC		WATER		4	248.2500	107330.0	327.6100	700	5	73/04/06 73/10/02
01092 ZINC ZN, TO		WATER		1	110.0000			110	110	73/04/06 73/04/06
01147 SELENIUM SE.TO		WATER		ī	5.000000			5	5	73/04/06 73/04/06
46570 CAL HARD CA N		WATER	\$	2	6152.400	30272.00	173.9900	6275	6029	73/05/08 73/06/04
70301 DISS SOL SUN		WATER	•	2		509950.0		34590	33580	73/05/08 73/06/04
71850 NITRATE TOT-N		WATER		ī		6.100000		5.1	.0	73/04/06 73/08/20
, 1000 Harring 101-1			K	ä		.0000000		. i	. i	73/05/08 73/10/02
			TOT	ž		3.532900		5.1	. 0	73/04/06 73/10/02
				•				•••	• • •	

/TYPA/AMBNT/STREAM

PGM=INVENT

PAGE:

59

33 43 48.0 118 04 08.0 2

BCEC02 AT EDINGER

06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140792

BOLSA CHICA CHANNEL

21CAOCFC

0999 FEET DEPTH

18070201

MEAN VARIANCE STAN DEV MAXIMUM MINIMUM BEG DATE END DATE RMK NUMBER PARAMETER MEDIUM 71900 MERCURY HG, TOTAL UG/L 1 1.000000 1.0 1.0 73/04/06 73/04/06 WATER

PAGE:

60

/TYPA/AMBNT/STREAM

WMCC04 33 43 49.0 118 01 54.0 2 AT HAZARD/BEACH BLVD 06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700 WESTMINSTER CHANNEL

21CAOCFC 770210 0000 FEET DEPTH

18070201

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN		STAN DEV		MINIMUM	BEG DATE END DATE
00010	WATER	TEMP	CENT	WATER				20.57400		28.5	8.0	76/11/09 92/03/23
00011	WATER	TEMP	FAHN	WATER	*			66.80100		83.3	46.4	76/11/09 92/03/23
00061	STREAM	FLOW,	INST-CFS	WATER	_			50544.00		598	. 5	82/01/12 92/02/12
					J			12882.00		750	0	76/11/09 88/03/25
					TOT			15125.00		750	0	76/11/09 92/02/12
00076	TURB		HACH FTU					1471.100		260.0	. 2	76/11/09 92/03/27
00093	SOLIDS	FLOAT	MG/L	WATER				405010.0		10600.0	9700.0	81/10/12 82/09/20
	CNDUCTVY		MICROMHO					65143000		36000	12	77/01/25 92/03/23
	CNDUCTVY	AT 25C	MICROMHO					77225000		38210	86	76/11/09 92/03/27
00116	INTHSVE	SURVEY	IDENT	WATER				.0000000		730601	730601	76/11/12 92/03/27
00300	ĐO		MG/L	WATER	.,			11.73800	3.426100	19.2	2.0	76/11/09 92/03/23
					K		15.00000	0 003400	1 443400	15.0	15.0	83/05/10 83/05/10
								2.083400		20.0	15.0	77/01/06 89/07/11
					TOT			13.76800		20.0	2.0 22.2	76/11/09 92/03/23 76/11/09 92/03/23
00301	DO	SATUR	PERCENT	WATER	\$			1742.500		238.1	4.0	78/04/11 79/10/09
00310	BOD	5 DAY	MG/L	WATER				159.0000		31.0	4.0	77/01/25 79/10/09
00335	COD	LOWLEVEL	MG/L	WATER				3358.900		290.0 9.50	5.60	76/11/09 92/03/23
00400	PH		su	WATER				.4906400		9.30	6.3	76/11/09 92/03/23
00403	PH	LAB	su	WATER				.3377200 19.22000		6.2	.0	77/07/12 83/11/08
00405	C02		MG/L	WATER				26450.00		340	110	77/07/12 83/11/08
	HCO3 ION	HC03	MG/L	WATER			11.00000	26430.00	102.0400	11	110	77/07/12 77/07/12
	CO3 ION	C03	MG/L	WATER				19385.00	120 2200	940	. 4	76/11/09 92/03/26
00530	RESIDUE	TOT NFLT	MG/L	WATER	v			.0000000		5		79/01/18 92/03/27
					K TOT			18087.00		_		76/11/09 92/03/27
	05050115		WO //	WATER	101			1568.900		300		77/04/12 92/03/26
00232	RESIDUE	VOL NFLT	MG/L	WATER	ĸ			2.013200		505	.5	79/01/18 92/03/27
					TOT			1421.600		300		77/04/12 92/03/27
00550	OT1 ODOE	TOT OVET	MG/L	WATER	101			5027.300		353.0		76/11/12 87/12/16
00220	OIL-GRSE	101-5XL1	MG/L	WAIER	K			8.003400		5.0		81/05/19 86/11/18
					TOT			4478.800		353.0	_	76/11/12 87/12/16
00610		N TOTAL	MG/L	WATER	,01			.1809100		2.900		76/11/09 92/03/26
00610	NH3+NH4-	NIUIAL	MG/L	WAIER	K			.0151840		.550		77/05/24 92/03/27
					TOT			.1444200		2.900		76/11/09 92/03/27
00610	UN-IONZD	AILIO N	MG/L	WATER	\$.0002641		.088		76/11/09 90/01/24
		NH3-N NH3-NH3	MG/L	WATER				.0003904		. 107	.00001	76/11/09 90/01/24
	UN-IONZD	NM3-NM3	MG/L	WATER	•			2.057800		9.400		76/11/09 92/03/27
00025	TOT KJEL	14	MG/L	MAILK	K			.0344450		.500		79/10/09 92/02/13
					TOT			2.098000				76/11/09 92/03/27
					101	102				2.400		

/TYPA/AMBNT/STREAM

PGM=INVENT

PAGE:

61

WMCC04

33 43 49.0 118 01 54.0 2 AT HAZARD/BEACH BLVD

06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700 WESTMINSTER CHANNEL

21CAOCFC 770210 0000 FEET DEPTH 18070201

	DADA	METER		MEDIUM	RMK	NUMBER	MEAN	VARTANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE	END DATE
00650	T PO4	PO4	MG/L	WATER	NiiiN			21.57000		42.00	.06	76/11/09	
00030	1 704	PU4	ma/L	MAICK	ĸ			.0508470		.50	. 03	77/04/12	
					TOT			19.32800		42.00	. 03	76/11/09	
00668	PHOS MUD	DDY WGT	MG/KG-P	WATER	, , ,		700.3900		1009.600	2100.0	.5	80/10/14	
	T ORG C	Č WG.	MG/L	WATER				.6536900		17.0	15.6	83/11/08	85/10/15
00000	· ORG O	•			K		3.000000			3.0	3.0	86/10/13	86/10/13
					TOT	4	13.15000	46.22300	6.798800	17.0	3.0	83/11/08	86/10/13
00721	CYANIDE	SEDMG/KG	DRY WGT	WATER	K	1	.0300000			.03	. 03	80/10/14	
		IN SED.	MG/KG	WATER		1	27.00000			27.00	27.00		82/11/09
					K			.4825000		1.90	. 20		85/10/15
					TOT			135.3000		27.00		80/10/14	
00900	TOT HARD	CACO3	MG/L	WATER				455910.0		2610	22	77/07/12	
		CA, DISS	MG/L	WATER				6612.500		260.0	145.0	77/07/12	
00925	MGNSIUM	MG,DISS	MG/L	WATER		_		39762.00		480.0	198.0		83/11/08
00930		NA,DISS	MG/L	WATER		2			1661.700	4000.00	1650.00	77/07/12	
	PTSSIUM	K,DISS	MG/L	WATER				1512.500		130.00	75.00	77/07/12	
	CHLORIDE	TOTAL	MG/L	WATER			4936.000		2918.900	7000	2872		83/11/08
	SULFATE	SO4-TOT	MG/L	WATER		2		239430.0		1300 1.00	608		83/11/08
	FLUORIDE	F,DISS	MG/L	WATER		2		.3280500		19.0	.19		83/11/08 83/11/08
00955	SILICA	DISOLVED	MG/L	WATER	v	62		20.95100		1.0			80/03/03
					K TOT	5		21.09600		19.0			83/11/08
01000	ADOFUTO	AC TOT	11071	WATER	101			31.20000		16	. 3		86/10/13
01002	ARSENIC	AS, TOT	UG/L	MAILK	ĸ			91.83300		33	ż		87/05/20
					τοτ			73.62300		33			87/05/20
01002	ARSENIC	SEDMG/KG	DRY WGT	WATER	101			45.39800		25.00	-		89/01/18
01003	BORON	B.DISS	UG/L	WATER				204800.0		1600			83/11/08
	CADMIUM	CD, TOT	UG/L	WATER				57.70200		30			82/11/08
01027	OADMITUM	00,101	aa, c	10151	K			53.20000		20	ī	77/06/07	92/03/27
					TOT			55.57000		30	ī	76/11/09	92/03/27
01028	CD MUD	DRY WGT	MG/KG-CD	WATER				.8579500			. 23	78/11/07	85/10/15
01010	00 11100	D			K	4		.0187000			. 41	80/05/13	89/01/18
					TOT	14	.8528600	.6418100	.8011300	2.80	. 23	78/11/07	89/01/18
01029	CHROMIUM	SEDMG/KG	DRY WGT	WATER				90.33100					89/01/18
01034	CHROMIUM	CR, TOT	UG/L	WATER				174.8500					92/02/12
•		•			K			121.4100					92/03/27
					TOT			148.8800					92/03/27
01042	COPPER	CU, TOT	UG/L	WATER				4794.100					92/03/27
					K	11	18.63600	269.6600	16.42100	50	3	77/09/13	92/03/21

PAGE:

62

/TYPA/AMBNT/STREAM

WMCC04
33 43 49.0 118 01 54.0 2
AT HAZARD/BEACH BLVD
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
WESTMINSTER CHANNEL
21CA0CFC 770210 18070201
0000 FEET DEPTH

		METER		MEDIUM		NUMBER	MEAN		STAN DEV		MINIMUM	BEG DATE END DATE
		CU, TOT	UG/L	WATER	TOT		40.45600			500	2	77/01/25 92/03/27
	COPPER	SEDMG/KG	DRY WGT				72.00700			410.00	3.60	78/11/07 89/01/18
01045	IRON	FE, TOT	UG/L	WATER		3	320.0000	9300.000	96.43700	390	210	83/11/07 86/10/13
01051	LEAD	PB,TOT	UG/L	WATER		103	98.92200	10450.00	102.2200	540	5	76/11/09 92/03/27
					K	29	16.72400	256.2800	16.00900	70	2	77/08/17 92/03/21
					TOT	132	80.86400	9358.100	96.73700	540	2	76/11/09 92/03/27
01052	LEAD	SEDMG/KG	DRY WGT	WATER		14	66.95000	7382.400	85.92100	320.00	8.70	78/11/07 86/10/14
01067	NICKEL	NI, TOTAL	UG/L	WATER		1	10.00000			10	10	92/02/12 92/02/12
					K	13	21.53900	230.7700	15.19100	40	10	92/02/05 92/03/27
					TOT	14	20.71400	222.5300	14.91700	40	10	92/02/05 92/03/27
01077	SILVER	AG, TOT	UG/L	WATER		3	41.00000	1116.000	33.40700	71.0	5.0	92/02/11 92/02/13
		-			K	11	5.636400	17.45500	4.177900	10.0	2.0	92/02/05 92/03/27
					TOT		13.21400			71.0	2.0	92/02/05 92/03/27
01092	ZINC	ZN, TOT	UG/L	WATER		130	119.1400	28711.00	169.4400	1430	ā	76/11/09 92/03/27
					K		15.00000			20	10	83/07/12 87/02/10
					TOT	132	117.5600	28436.00	168.6300	1430	3	76/11/09 92/03/27
01093	ZINC	SEDMG/KG	DRY WGT	WATER		14	146.0000	23622.00	153.7000	470.00	18.00	78/11/07 89/01/18
	SILICON		UG/L SI		K	1	.1000000		• • • • • • • • • • • • • • • • • • • •	.1	,1	83/05/09 83/05/09
	SELENIUM		UG/L	WATER	• •	6	5.066700	55.22700	7.431500	20	. 4	77/01/25 86/10/13
		,			K		13.00000			54	2	78/04/11 87/05/20
					TOT		9.826700			54	. 4	77/01/25 87/05/20
01148	SELENIUM	SEDMG/KG	DRY WGT	WATER		4			.4180400	1.00	. 09	79/05/09 86/10/14
					K	8			.6115600	1.90	. 05	78/11/07 85/10/15
					TOT	12	.4919200			1.90	. 05	78/11/07 86/10/14
01170	FE MUD	DRY WGT	MG/KG-FE	WATER			14667.00				6000.00	83/11/08 86/10/14
01501	ALPHA	TOTAL	PC/L	WATER		. 2			.0212140	. 2	. 2	79/01/17 89/03/08
03501	BETA	TOTAL	PC/L	WATER		2		.0000500		. ī	. 1	79/01/17 89/03/08
			/100ML	WATER		82	140630.0			2400000	75	76/11/09 82/09/21
				,	L	2			.0000000	2400000	2400000	80/03/03 81/10/02
					TOT	84	194420.0			2400000	75	76/11/09 82/09/21
31615	FEC COLI	MPNECMED	/100ML	WATER			21000.00			21000	21000	77/10/11 77/10/11
	PHENOLS	TOTAL	UG/L	WATER	K		35.83300	317,4300	17.81700		10	77/01/25 82/11/09
	INVALID	PAR	NUMBER	WATER	• •		.1200000		2	.1200000		78/04/11 78/04/11
	BETA BHC		DRY WGT		K		41.66700	2608.300	51.07200		5.000	82/11/09 85/10/15
	DELTABHO	oupad/ //a	TOTUG/L		ĸ		2.527500			10.000	,010	82/11/09 86/10/14
	DELTABHO	SEDUG/KG	DRY WGT		ĸ						5.000	82/11/09 85/10/15
	DIETHYLP				K K		10.00000			10.000	10.000	82/11/09 82/11/09
	DIETHYLP				ĸ		10.00000			10.000	10.000	82/11/09 82/11/09
	ENDSULSE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TOTUG/L		ĥ		2.562500	24.58600	4.958400		.050	82/11/09 86/10/14
					15	•		_ ,		20.000		02:11/05 00/10/14

/TYPA/AMBNT/STREAM

PGM=INVENT

PAGE:

63

WMCC04

33 43 49.0 118 01 54.0 2

AT HAZARD/BEACH BLVD 06059 CALIFORNIA SANTA ANA RIVER BASIN ORANGE 140700

WESTMINSTER CHANNEL 21CAOCFC 770210 0000 FEET DEPTH 18070201

	PARAM	ETER		MEDIUM	RMK	NUMBER	MEAN		STAN DEV		MINIMUM	BEG DATE	
34354	ENDSULSF S	EDUG/KG	DRY WGT	WATER	K		110.0000				10.000	82/11/09	
		ULFAN	TOTWUG/L		K	4	2.527500			10.000	.010	82/11/09	
34359	BENDOSUL S	EDUG/KG	DRY WGT	WATER	K	3	41.66700			100.000	5.000	82/11/09	
34361	A-ENDO S	ULFAN	TOTWUG/L	WATER	K	4	2.527500			10.000	.010	82/11/09	
34364	AENDOSUL S	EDUG/KG	DRY WGT	WATER	K	3				100.000	5.000	82/11/09	
34671	PCB	1016	TOTWUG/L	WATER	K	6		.0816670		1.000	. 300	81/11/10	
38260	MBAS		MG/L	WATER			.2790900				. 07	78/04/11	
					K		.0700000			.10	. 01	79/05/09	
					TOT		.2342900				. 01	78/04/11	
39034	PERTHANE W	HL SMPL	UG/L	WATER	K		2.375000	8.233000	2.869300	10.000	.500	79/05/03	
39045	2,4,5-TP W	ITR SMPL	UG/L	WATER	K		5.000000			5.000	5.000	79/05/03	
	SIMAZINE	MUD	ug/gk	WATER	K		18.75000				5.00	79/05/03	
	SIMAZINE W		(UG/L)	WATER	K		.9285700				.5	79/05/09	
	ALPHABHC S	EDUG/KG			K K		41.66700	2608.300	51.07200		5.000	82/11/09	
	P,P'DDD		TOT UG/L		K		1.000000			1.000	1.000	81/11/10	
	ALDRIN		TOT UG/L		K		1.141500				.005	77/01/25	
		EDUG/KG	DRY WGT		K	13	20.80800				.50	78/11/07	
	ALPHABHC		TOTUG/L		K	3		.0006750			.005	83/11/08	
	BETA BHC	_	TOTUG/L		K	_ 3		.0005333			.010	83/11/08	
	GAMMABHC L	INDANE	TOT.UG/L	WATER	K		1.290000				.050	77/01/25	
	GBHC-MUD L		DRYUG/KG		K		14.20800				. 50	78/11/07	
39350	CHLRDANE T	ECHEMET	TOT UG/L	WATER	K		1.176500				.100	77/01/25	
39351	CDANEDRY T	ECHSMET	MUDUG/KG	WATER			169.5000				69.00	80/05/14	
					K		59.59100				. 50	78/11/07 78/11/07	
					TOT		76.50000			500.00	. 50		
39360		WHL SMPL	UG/L	WATER	K		1.141800				.010	77/01/25 78/11/07	
39363	DDD	MUD	UG/KG	WATER	Ķ		20.80800				.50 .010	77/01/25	
39365		WHL SMPL	UG/L	WATER	K		1.159400				.50	78/11/07	
39368	DDE	MUD	UG/KG	WATER	K		20.80800				.020	77/01/25	
39370		WHL SMPL	UG/L	WATER	K		1.148200				.50	78/11/07	
39373	DDT	MUD	UG/KG	WATER	K		1.141800				.010	77/01/25	
	DIELDRIN		TOTUG/L		K						5.000	79/05/09	
	DIELDRIN		DISUG/L		5		16.25000 20.80800				.50		85/10/15
	DIELDRIN S	sebug/KG			K K K K		1.147700					77/01/25	
	ENDRIN	250U0 (PA	TOT UG/L				31.25000						85/10/15
		SEDUG/KG	DRY WGT TOTUG/L		5		1.282400					77/01/25	
	TOXAPHEN	25010720			ĸ		271.2900						85/10/15
	TOXAPHEN S	SEDUG/KG			K		1.141800					77/01/25	
59410	HEPTCHLR		TOTUG/L	MAICK	K	17	1.141000	£ 1 30 7 00 0	1.010100	0.000	.010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,

PAGE:

64

/TYPA/AMBNT/STREAM

WMCC04
33 43 49.0 118 01 54.0 2
AT HAZARD/BEACH BLVD
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
WESTMINSTER CHANNEL
21CAOCFC 770210 18070201
0000 FEET DEPTH

	PARAMETE	· p	MEDIUM	RMK	NUMBER	MEAN	VARTANCE	STAN DEV	MAYTMUM	MINIMUM	BEG DATE	END DATE
39413	HEPTCHLR SEDU			K		20.80800			100.00	.50	78/11/07	
	HPCHLREP	TOTUG/L		ĸ		1.141800			5.000	.010	77/01/25	
	HPCHLREP SEDU			î		20.80800			100.00	.50	78/11/07	
	MTHXYCLR WHL		WATER	î		1.471400			5.000	.300	79/05/03	
	MTHXYCLR MUD		WATER	Ê		78.75000			500.00	10.00	79/10/09	
	PCB-1221	TOTUG/L		ĸ		.8833300	.0816670		1.000	.300	81/11/10	
	PCB-1221 SEDU			Ŕ		1040.000		1697.900	3000.00	20.00	82/06/02	
	PCB-1232	TOTUG/L		ĸ		1.429400			5.000	.300	77/01/25	
	PCB-1232 SEDU			Ŕ		251.1900			3000.00	.50	78/11/07	
	PCB-1242	TOTUG/L		ĸ		1.429400			5.000	.300	77/01/25	
	PCB-1242 SEDU			ĥ		251.1900			3000.00	.50	78/11/07	
	PCB-1248	TOTUG/L		ĸ		.8833300			1.000	.300	81/11/10	
	PCB-1248 SEDU			ĸ		1040.000		1697.900	3000.00	20.00	82/06/02	
	PCB-1254	TOTUG/L		•		1.300000	2002000	1097.900	1.300	1.300	79/10/09	
33304	POB-1234	101007	MAIER	K		1.456300	1 944000	1 304300	5.000	.300	77/01/25	
				τοτ		1.447100			5.000	.300	77/01/25	
39507	PCB-1254 SEDU	JG/KG DRY WGT	WATED	K		272.0800			3000.00	5.00	79/05/09	
	PCB-1260	TOTUG/L		ĸ		1.429400			5.000	.300	77/01/25	
	PCB-1260 SEDU			K		251.1900			3000.00	.50	78/11/07	
	PCB-1016 SEDU			K		1550.000		2050.600	3000.00	100.00		
		SMPL UG/L	WATER	~	2	.5000000	4205000	2030.600	.500	.500	83/11/08	
39330	MALAINN WIL	SMPL UU/L	MAILK	K	11	2.545500	9 672700	2 045000	10.000	1.000	77/01/25 79/05/03	
				TOT		2.375000			10.000	.500	77/01/25	
20521	MALATHN MU	JD UG/KG	WATER			123.5000						
			WATER	K K					1000.00	5.00	79/05/09	
			WATER			2.545500			10.000	1.000	79/05/03	
	PARATHN MU		WATER	K		123.5000			1000.00	5.00	79/05/09	
39730		SMPL UG/L	WATER	Ķ		6.000000			10.000	.500	81/11/10	
39731	2,4-D ML		WATER	K		161.0000			500.00	5.00	81/11/10	
39760		SMPL UG/L	WATER	K		5.200000			10.000	.100	81/11/10	
39761	SILVEX MU		WATER	K	_	80.20000			100.00	1.00	81/11/10	
		SMPL UG/L	WATER	K		1.441700			5.000	.100	77/01/25	
		SMPL UG/L	WATER	K		1.340700			5.000	.010	79/05/03	
	LINDANE MUD		WATER	K		22.50000			100.00	5.00	79/05/09	
	CAL HARD CA		WATER	\$	2	1901.700		1024.200	2626	1177	77/07/12	
	DISS SOL SU		WATER		2			5924.900	14000	5621	77/07/12	
71850	NITRATE TOT-	-NO3 MG/L	WATER			10.03400			54.1	. 4	76/11/09	
				K		.9300000			4.4	. 2	77/05/24	
				TOT		9.141600			54.1	. 2	76/11/09	
71885	IRON F	E UG/L	WATER		2	640.0000	20000.00	141.4200	740.00	540.00	77/01/25	77/07/12

/TYPA/AMBNT/STREAM

PGM=INVENT

PAGE:

WMCC04

33 43 49.0 118 01 54.0 2

AT HAZARD/BEACH BLVD

06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700

WESTMINSTER CHANNEL

18070201

21CAOCFC 770210 0000 FEET DEPTH

	PARAMET	FD		MEDIUM	RMK	NUMBER	MEAN	VARTANCE	STAN DEV	MAXTMIM	MINIMUM	BEG DATE	END DATE
71900		TOTAL	UG/L	WATER	NIII/N				5.924300		1.3	78/04/11	
					K	10	.9100000	.6854500	.8279200	3.0	. 2	77/01/25	86/10/13
					TOT	15	2.500000	15.88600	3.985700	15.1	. 2	77/01/25	86/10/13
71921	MERCURY SED	DMG/KG	DRY WGT	WATER		7	.4345700	.9164300	.9573100	2.6	.01	78/11/07	83/11/08
					K	7	.1600000	.0153330	.1238300	. 4	.02	80/05/13	89/01/18
					TOT	14	. 2972900	.4503400	.6710800	2.6	.01	78/11/07	89/01/18
74041	WQF SA	AMPLE	UPDATED	WATER		75	893360.0	3813E+05	19528.00	920708	860717	77/07/12	92/03/27
80101	CARBON DRY	/ WGT	MG/KG	WATER		3	15643.00	66732000	8169.000	25000.0	9930.0	83/11/08	86/10/14
81886	PERTHANE SE	ED DRY	WGTUG/KG	WATER	K	4	160.0000	52800.00	229.7800	500.000		81/11/10	85/10/15
82007	% SAND IN	SED	DRY WGT	WATER		4	59.05000	1348.700	36.72400	82.00	4.20	82/06/02	85/10/15
82008	SEDIMENT PAR	RTSIZE	SILT	WATER		4	33.90000	1433.800	37.86500	89.60	5.00	82/06/02	85/10/15
82009	SEDIMENT PAR	RTSIZE	CLAY	WATER		4	4.050000	4.943300	2.223400	6.20	1.00	82/06/02	85/10/15

PAGE:

66

/TYPA/AMBNT/ESTURY

HUNSUN
33 43 53.0 118 04 51.0 2
SUNSET BAY AT NAVY BUOYS
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
HUNTINGTON HARBOUR

HQ 18070201001 0010.680 OFF

21CAOCFC 770210 0999 FEET DEPTH

	545	WETER		MEDIUM	RMK	NUMBER	MEAN	VADTANCE	STAN DEV	MAYTMIN	MINIMUM	BEG DATE END DATE
		METER			KMK		7.000000	VARIANCE	STAIL DEA	7	M_114MUM 7	78/11/08 78/11/08
	VSAMPLOC	DEPTH	FEET	WATER		_	86.60000			87	87	82/06/03 82/06/03
00008	LAB	IDENT.	NUMBER	WATER						6.2	6.2	82/06/03 82/06/03
	XSAMPLOC		LF BANK				6.200000					
00010	WATER	TEMP	CENT	BOTTOM			19.30000			19.3	19.3	91/08/13 91/08/13
				WATER	_		18.07300	8.392900	2.89/100	24.9	1.8	76/11/22 91/08/13
00011	WATER	TEMP	FAHN	BOTTOM	\$		66.74000			66.7	66.7	91/08/13 91/08/13
				WATER	*		64.53100			76.8	35.2	76/11/22 91/08/13
00035	WIND	VELOCITY	MPH	WATER			3.317400	10.96900	3.311900	15.0	.0	79/02/15 91/08/13
					K		1.000000			1.0	1.0	87/02/11 87/02/11
					TOT		3.284300			15.0	. 0	79/02/15 91/08/13
00036	WIND	DIR.FROM	NORTH-0	WATER			204.4700			315	0	79/03/14 91/08/13
00065	STREAM	STAGE	FEET	WATER			3.427300			7.00	. 30	76/11/22 88/05/12
00067	TIDE	STAGE	CODE	WATER			3283.700		2023.400	7310	1010	76/11/22 88/05/12
00076	TURB	TRBIDMTR	HACH FTU	WATER		93	1.462400	3.012600	1.735700	13.0	. 2	76/11/22 91/08/13
00078	TRANSP	SECCHI	METERS	WATER		27	1.827800	.1760300	.4195600	2.50	1.00	84/08/22 91/08/13
•					L	1	2.000000			2.00	2.00	86/04/16 86/04/16
					TOT	28	1.833900	.1705700	.4130000	2.50	1.00	84/08/22 91/08/13
00094	CNDUCTVY	FIELD	MICROMHO	BOTTOM		1	51100.00			51100	51100	91/08/13 91/08/13
				WATER		391	47836.00	21433000	4629.600	56000	3900	77/01/27 91/08/13
00095	CNDUCTVY	AT 25C	MICROMHO	WATER		90	44961.00	38457000	6201.400	70000	26600	76/11/22 91/08/13
00116	INTHSVE		IDENT	WATER		2	730600.0	.0000000	.0000000	730601	730601	78/02/16 79/01/10
00300	DO	04.172	MG/L	BOTTOM			6.900000			6.9	6.9	91/08/13 91/08/13
00000				WATER		381	7.571200	1.230000	1.109100	10.0	4.5	76/12/21 91/08/13
					L.		15.00000			15.0		76/11/22 76/11/22
					TOT		7.590700	1.371300	1.171000	15.0		76/11/22 91/08/13
00301	DO	SATUR	PERCENT	BOTTOM	\$		73.40400		• • • • • • • • • • • • • • • • • • • •	73.4	73.4	91/08/13 91/08/13
00301	50	SATUR	FEROLITI	WATER	š		79.37500	162.8900	12.76300		48.9	76/11/22 91/08/13
00310	BOD	5 DAY	MG/L	WATER	•		9.000000					78/04/12 79/10/10
00310	800	2 DAI	ma/ L	MAILK	K	ĭ	3.000000	, 0. 00000		3.0		79/05/10 79/05/10
					TOT	à		59.66700	7.724400			78/04/12 79/10/10
00335	COD	LOWLEVEL	MG/L	WATER	101	20	296.1500					77/06/08 79/06/13
00333	COD	FOMPEACE	MG/L	MAILK	K		1.000000		.0000000			78/01/12 78/12/13
					Tot		257.6500					77/06/08 79/06/13
00304	BOD THE	12047707	MG/L	WATER	K		5.000000	/3290.00	2/4.0300	5.0		79/05/10 79/05/10
	BOD INH	13DAYTOT	MG/L SU	BOTTOM	•	1	7.600000			7.60		91/08/13 91/08/13
00400	PH		5u			387		0006400	.3156600			76/11/22 91/08/13
00465	511		C) !	WATER			7.837500		.2420600			76/11/22 91/08/13
00403		LAB	su	WATER					109.6100			76/11/22 91/08/13
00530	RESIDUE	TOT NFLT	MG/L	WATER		81						
					K	12	4.666700	1.555400	1.154/00	. 5		85/03/13 90/04/12

PAGE:

67

/TYPA/AMBNT/ESTURY

HUNSUN

33 43 53.0 118 04 51.0 2 SUNSET BAY AT NAVY BUOYS

ORANGE 06059 CALIFORNIA SANTA ANA RIVER BASIN 140700

HUNTINGTON HARBOUR 21CAOCFC 770210 0999 FEET DEPTH

		METER		MEDIUM	RMK	NUMBER	MEAN		STAN DEV		MUMINIM	BEG DATE END DATE
		TOT NELT	MG/L	WATER	TOT			10634.00		760	. 8	76/11/22 91/08/13
00535	RESIDUE	VOL NFLT	MG/L	WATER				1382.500		240	. 2	77/04/13 90/06/21
					K			4.628600		5	. 5	81/01/14 91/08/13
00550		TOT 01/1 T		*** * ***	TOT			1107.500		240	. 2	77/04/13 91/08/13
00550	OIL-GRSE	IUI-SXLI	MG/L	WATER				83.96500	9.163200	27.0	. 8	78/04/12 82/11/10
					K		.5000000	00 70300		.5	. 5	79/05/10 79/05/10
00610	NULD - NULA		110.71	WATER	TOT			80.78300		27.0	. 5	78/04/12 82/11/10
00010	NH3+NH4-	NIUIAL	MG/L	WATER	v			.4581100		4.500	.040	76/11/22 91/08/13
					K TOT			.0050001		.500	.100	76/12/21 85/05/22
00610	UN-IONZD	NH3-N	110 /1	WATER				.3345000		4.500	.040	76/11/22 91/08/13
	UN-IONZD	NH3-NH3	MG/L MG/L	WATER	\$ •			.0004334		.129	. 0010	76/11/22 91/08/13
	TOT KJEL	N N	MG/L MG/L	WATER	•			1.042600		.157 7.200	.001	76/11/22 91/08/13
00023	TOT KUEL	14	mg/L	MAILK	K	10		.0254450		.500	.100	76/11/22 91/08/13 79/03/14 85/10/16
					τοτ			.9931000		7.200	.100	76/11/22 91/08/13
00650	T P04	P04	MG/L	WATER	101	74		.0503260		1.22	.02	76/11/22 90/06/21
00000	1 1-04	F04	ma/ L	MAILK	K			.0407900		.50	.03	77/10/12 91/08/13
					TOT				.2205500	1.22	.02	76/11/22 91/08/13
00668	PHOS MUD	DRY WGT	MG/KG-D	WATER	101				275.7000	642.0	11.0	78/04/12 83/05/11
	SULFIDE	TOTAL	MG/L	WATER		ĭ	.0000000	,0011.00	27017000	.00	.00	83/11/09 83/11/09
	SULFIDE	IN SED.	MG/KG	WATER		•		6.480000	2.545600	5.00	1.40	82/11/10 83/05/11
		2., 020.			K		1.400000	0.40000	2.04000	1.40	1.40	82/06/03 82/06/03
					TOT			4.320000	2.078500	5.00	1.40	82/06/03 83/05/11
00955	SILICA	DISOLVED	MG/L	WATER					1.087400	4.5	.1	76/11/22 80/10/15
					K	21			1.061800	5.0	. i	76/12/21 80/11/13
					TOT				1.074600	5.0	. 1	76/11/22 80/11/13
01002	ARSENIC	AS.TOT	UG/L	WATER					17.67800	40	15	82/06/03 83/05/11
					K	13	7.307700	17.39800	4.171000	16	2	77/07/13 89/01/19
					TOT	15	10.00000	87.71400	9.365600	40	2	77/07/13 89/01/19
01003	ARSENIC	SEDMG/KG	DRY WGT	WATER		6	4.083300	2.781700	1.667900	6.70	2.50	78/04/12 83/05/11
01019	CD MUD	WET WGTM	G/KG-CD	WATER		1	.7300000			.73	.73	78/04/12 78/04/12
01027	CADMIUM	CD, TOT	UG/L	WATER		15	17.60000	466.2600	21.59300	82	1	76/12/21 83/05/11
		•			K	17	5.235300	30.44100	5.517400	20	1	76/11/22 89/01/19
					TOT	32	11.03100	265.5800	16.29700	82	1	76/11/22 89/01/19
01028	CD MUD	DRY WGT	MG/KG-CD	WATER		5		.0395310	.1988200	.73	. 20	78/04/12 83/05/11
					K	1	.1600000			.16	.16	82/06/03 82/06/03
					TOT	6			.2042300	.73	.16	78/04/12 83/05/11
	CHROMIUM								5.273200	17.00	3.85	78/04/12 83/05/11
01034	CHROMIUM	CR, TOT	UG/L	WATER		30	27.45000	802.8700	28.33500	120	1	77/06/08 87/09/23

PGM=INVENT

PAGE:

68

HUNSUN

33 43 53.0 118 04 51.0 2 SUNSET BAY AT NAVY BUDYS

06059 CALIFORNIA SANTA ANA RIVER BASIN

HUNTINGTON HARBOUR 21CAOCFC 770210 0999 FEET DEPTH

HQ 18070201001 0010.680 OFF

ORANGE

140700

		METER		MEDIUM	RMK	NUMBER	MEAN		STAN DEV		MINIMUM	BEG DATE END DATE
	CHROMIUM		ug/L	WATER	K		12.91300			60	. 3	76/11/22 90/06/21
	CHROMIUM		UG/L	WATER	TOT	61	20.06200	568.9400	23.85200	120	. 3	76/11/22 90/06/21
		WET WGTM		WATER		1	8.080000			8.08	8.08	78/04/12 78/04/12
01042	COPPER	CU, TOT	ug/L	WATER			44.56000			180	2	77/02/09 90/06/21
					K		21.34400			70	6	77/09/14 90/04/12
					TOT		35.50000			180	2	77/02/09 90/06/21
01043	COPPER	SEDMG/KG	DRY WGT				10.53000	14.62600	3.824500	17.00	6.80	78/04/12 83/05/11
01045	IRON	FE, TOT	UG/L	WATER			210.0000			210	210	86/10/15 86/10/15
01051	LEAD	PB, TOT	UG/L	WATER			12.74300			50	3	76/12/21 90/04/12
					K		17.96000			200	1	76/11/22 90/06/21
					TOT	85	15.81200	905.2700	30.08800	200	1	76/11/22 90/06/21
01052	LEAD	SEDMG/KG	DRY WGT	WATER			14.71700			21.00	8.90	78/04/12 83/05/11
01092	ZINC	ZN, TOT	UG/L	WATER		61	40.98400	1931.800	43.95200	250	6	76/11/22 89/01/19
		•			K	25	20.16000	783.0600	27.98300	150	5	77/04/13 90/06/21
					TOT	86	34.93000	1675.200	40.92900	250	5	76/11/22 90/06/21
01093	ZINC	SEDMG/KG	DRY WGT	WATER		6	42.06700	332.6700	18.23900	75.00	28.00	78/04/12 83/05/11
01102		SN, TOT	UG/L	WATER	K	2	2565.000	11859000	3443.600	5000	130	79/05/10 86/10/15
	TIN MUD	DRY WGT	MG/KG-SN			ĩ	18.00000			18.00	18.00	79/05/10 79/05/10
	SILICON				K	ī	.1000000			. 1	.1	83/05/11 83/05/11
	SELENIUM		UG/L	WATER	•	ä	10.66700	85.33400	9.237600		0	78/04/12 86/10/15
		,			K	12	13.58300	248.9900	15.78000	50	1	77/07/13 89/07/13
					TOT	15	13.00000	209.2900	14.46700	50	0	77/07/13 89/07/13
01148	SELENIUM	SEDMG/KG	DRY WGT	WATER	· - ·	ī	.4600000			. 46	. 46	78/04/12 78/04/12
					K	5	.4660000	.3425800	.5853000		. 06	78/11/08 83/05/11
					TOT	6			. 5235200		. 06	78/04/12 83/05/11
01501	ALPHA	TOTAL	PC/L	WATER		ã			.1385700		0	89/01/19 89/03/23
	***************************************				K	ī	3.000000			3	3	81/05/20 81/05/20
					TOT	4		2.144400	1.464400	3	Ò	81/05/20 89/03/23
01502	ALPHA-T	ERROR	PC/L	WATER	,	i	.3000000			. 3	. 3	81/05/20 81/05/20
03501	BETA	TOTAL	PC/L	WATER		3		.0009013	.0300220	. 05	Ò	89/01/19 89/03/23
00001	OLIA	10172			K	ĭ	4.000000			4	4	81/05/20 81/05/20
					TOT		1.013000	3.966000	1.991500	4	Ò	81/05/20 89/03/23
03502	BETA-T	ERROR	PC/L	WATER	, , ,	i	1.000000	• • • • • • • • • • • • • • • • • • • •		1	ī	81/05/20 81/05/20
09501	RA-226	TOTAL	PC/L	WATER	K	ī	.5000000			. 5	.5	81/05/20 81/05/20
09502	RA-226	ERROR	PC/L	WATER	•	i	.1000000			.1		81/05/20 81/05/20
	PHENOLS	TOTAL	UG/L	WATER	K	11	31.81800	316.3700	17.78700			77/07/13 82/11/10
	BETA BHC				ĸ		20.00000			20.000		82/11/10 82/11/10
	DELTABHO	JEDUG! NO	TOTUG/L		K K		1.000000			1.000		82/11/10 82/11/10
	DELTABHO	SEDUG/KG			ĸ	ī	20.00000			20.000		82/11/10 82/11/10
0-1-02			- IN		**	•						>-::::

PGM=INVENT

PAGE:

69

HUNSUN 33 43 53.0 118 04 51.0 2 SUNSET BAY AT NAVY BUDYS ORANGE 06059 CALIFORNIA SANTA ANA RIVER BASIN 140700

HUNTINGTON HARBOUR 21CAOCFC 770210 0999 FEET DEPTH

PARAMET	TER	MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV		MINIMUM	BEG DATE END DATE
34337 DIETHYLP HTH			K	1	1.000000			1.000	1.000	82/11/10 82/11/10
34338 DIETHYLP HT			K	1	1.000000			1.000	1.000	82/11/10 82/11/10
34351 ENDSULSF	TOTUG/L		K	1	1.000000			1.000	1.000	82/11/10 82/11/10
34354 ENDSULSF SEL			K	1	20.00000			20.000	20.000	82/11/10 82/11/10
	LFAN TOTWUG/L		K	1	1.000000			1.000	1.000	82/11/10 82/11/10
	DUG/KG DRY WGT		K	1	20.00000			20.000	20.000	82/11/10 82/11/10
	LFAN TOTWUG/L		K	1	1.000000			1.000	1.000	82/11/10 82/11/10
	DUG/KG DRY WGT		K.	1	20.00000			20.000	20.000	82/11/10 82/11/10
	1016 TOTWUG/L		K	3	1.000000			1.000	1.000	81/11/12 82/11/10
38260 MBAS	MG/L	WATER		6	.0816670	.0104170	.1020600	. 27	. 01	80/05/14 82/11/10
			_ K	1	.0100000			. 01	. 01	79/05/10 79/05/10
			TOT	7		.0094143		. 27	.01	79/05/10 82/11/10
39034 PERTHANE WHI		WATER	K	6	1.000000	.0000000	.0000000	1.000	1.000	79/05/10 82/11/10
	MUD UG/GK	WATER	K	1	5.000000			5.00	5.00	79/05/10 79/05/10
39055 SIMAZINE WH		WATER	K	5	2.800000	16.20000	4.024900	10	1	79/05/10 82/11/10
39076 ALPHABHC SE			K	1	20.00000			20.000	20.000	82/11/10 82/11/10
39330 ALDRIN	TOT UG/L		K	8		.1012500		1.000	.100	78/11/08 82/11/10
	DUG/KG DRY WGT		K	3		104.2500		20.00	.50	78/11/08 82/11/10
39340 GAMMABHC LI			K	8		.1012500		1.000	.100	78/11/08 82/11/10
39343 GBHC-MUD LI			K	3		104.2500		20.00	.50	78/11/08 82/11/10
39350 CHLRDANE TE			K	8		.1012500		1.000	.100	78/11/08 82/11/10
	CHEMET MUDUG/KG		K	3		104.2500		20.00	.50	78/11/08 82/11/10
	L SMPL UG/L	WATER	K	8		.1012500		1.000	.100	78/11/08 82/11/10
	MUD UG/KG	WATER	K	5		104.2500		20.00	.50	78/11/08 82/11/10
	IL SMPL UG/L	WATER	K	. 8		.1012500		1.000	.100	78/11/08 82/11/10
	MUD UG/KG	WATER	K	3		104.2500		20.00	.50	78/11/08 82/11/10
	IL SMPL UG/L	WATER	K	8		.1012500		1.000	.100	78/11/08 82/11/10
	MUD UG/KG	WATER	K	3		104.2500		20.00 1.000	.50	78/11/08 82/11/10 78/11/08 82/11/10
39380 DIELDRIN	TOTUG/L		K	8		.1012500			.100 .50	
39383 DIELDRIN SE				3		104.2500		20.00 1.000	.100	78/11/08 82/11/10 78/11/08 82/11/10
39390 ENDRIN	TOT UG/L		K	8		.1012500				79/05/10 82/11/10
	DUG/KG DRY WGT		K	2		112.5000		20.00 1.000	.100	78/11/08 82/11/10
39400 TOXAPHEN	TOTUG/L		K	8		.1012500		20.00		78/11/08 82/11/10
39403 TOXAPHEN SE			K	3		104.2500		1.000	.50 .100	78/11/08 82/11/10
39410 HEPTCHLR	TOTUG/L		5	8				20.00	.100	78/11/08 82/11/10
39413 HEPTCHLR SE			Ķ	3		104.2500		1.000		78/11/08 82/11/10
39420 HPCHLREP	TOTUG/L		Ķ	8		.1012500		20.00		78/11/08 82/11/10
39423 HPCHLREP SE			K	3		104.2500		1.000		79/05/10 82/11/10
39480 MTHXYCLR WH	IL SMPL UG/L	WATER	K	,	1.000000	. 0000000	. 0000000	1.000	1.000	79703/10 02/11/10

PGM=INVENT

PAGE:

70

HUNSUN

33 43 53.0 118 04 51.0 2 SUNSET BAY AT NAVY BUOYS

06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700

HUNTINGTON HARBOUR 21CAOCFC 770210 0999 FEET DEPTH

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
	MTHXYCLR	MUD DRY	UG/KG	WATER	K	1	20.00000			20.00	20.00	82/11/10 82/11/10
	PCB-1221		TOTUG/L		K	3	1.000000	.0000000	.0000000	1.000	1.000	81/11/12 82/11/10
	PCB-1232		TOTUG/L		K K	8	.8875000	.1012500	.3182000	1.000	.100	78/11/08 82/11/10
39495	PCB-1232	SEDUG/KG	DRY WGT	WATER	K	3	8.500000	104.2500	10.21000	20.00	.50	78/11/08 82/11/10
	PCB-1242		TOTUG/L	WATER	Ŕ	8	.8875000	.1012500	.3182000	1.000	.100	78/11/08 82/11/10
39499	PCB-1242	SEDUG/KG	DRY WGT	WATER	K	3	8.500000	104.2500	10.21000	20.00	.50	78/11/08 82/11/10
39500	PCB-1248		TOTUG/L	WATER	K	3	1.000000	.0000000	.0000000	1.000	1.000	81/11/12 82/11/10
39504	PCB-1254		TOTUG/L	WATER	K	8	.8875000	.1012500	.3182000	1.000	.100	78/11/08 82/11/10
39507	PCB-1254	SEDUG/KG	DRY WGT	WATER	K K K	3	8.500000	104.2500	10.21000	20.00	.50	78/11/08 82/11/10
39508	PCB-1260		TOTUG/L	WATER	K	8	.8875000	.1012500	.3182000	1.000	.100	78/11/08 82/11/10
39511	PCB-1260	SEDUG/KG	DRY WGT	WATER	K	3	8.500000	104.2500	10.21000	20.00	.50	78/11/08 82/11/10
39530	MALATHN	WHL SMPL	UG/L	WATER	K	5	1.000000	.0000000	.0000000	1.000	1.000	79/05/10 82/11/10
39531	MALATHN	MUD	UG/KG	WATER	K	1	5.000000			5.00	5.00	79/05/10 79/05/10
39540	PARATHN	WHL SMPL	UG/L	WATER	K	5	1.000000	.0000000	.0000000	1.000	1.000	79/05/10 82/11/10
39541	PARATHN	MUD	UG/KG	WATER	K K		5.000000			5.00	5.00	79/05/10 79/05/10
39730	2,4-D	WHL SMPL	UG/L	WATER	K	3	10.00000	.0000000	.0000000	10.000	10.000	81/11/12 82/11/10
39731	2,4-D	MUD	UG/KG	WATER	K	1	100.0000			100.00	100.00	82/11/10 82/11/10
39760	SILVEX	WHL SMPL	UG/L	WATER	K	3	10.00000	.0000000	.0000000	10.000	10.000	81/11/12 82/11/10
39761	SILVEX	MUD	UG/KG	WATER	K	1	100.0000			100.00	100.00	82/11/10 82/11/10
39780	DICOFOL	WHL SMPL	UG/L	WATER	K	5	.8200000	.1620000	.4024900	1.000	.100	78/11/08 80/10/15
39782	LINDANE	WHL SMPL	UG/L	WATER	K	7	1.000000	.0000000	.0000000	1.000	1.000	79/05/10 82/11/10
39783	LINDANE	MUD DRY	UG/KG	WATER	K	2	12.50000	112.5000	10.60700	20.00	5.00	79/05/10 82/11/10
71850	NITRATE	TOT-NO3	MG/L	WATER		53	2.519800	6.943500	2.635100	12.0	. 1	76/11/22 90/04/12
					K	40	.3665000	.0233720	.1528800	1.0	. 1	78/03/08 91/08/13
					TOT	93	1.593700	5.083400	2.254600	12.0	. 1	76/11/22 91/08/13
71885	IRON	FE	UG/L	WATER		2	140.0000	9800.000	98.99500	210.00	70.00	77/07/13 86/10/15
71900	MERCURY	HG, TOTAL	UG/L	WATER		8		2.496400		4.6	. 2	77/07/13 83/05/11
					K	8	.8625000	.2455400	.4955200	2.0	. 5	78/11/08 89/07/13
					TOT	16	1.543800	1.774600	1.332200	4.6	. 2	77/07/13 89/07/13
71921	MERCURY	SEDMG/KG	DRY WGT	WATER		4		.0019547		. 1	.04	78/11/08 83/05/11
					K	2		.0018000		. 2	. 1	78/04/12 82/11/10
					TOT	6		.0026944	.0519080	. 2	.04	78/04/12 83/05/11
74041	WQF	SAMPLE	UPDATED			1	920110.0			920108	920108	91/08/13 91/08/13
				WATER		175	887300.0	1670E+05	12923.00	920109	860715	85/10/15 91/08/13
	PERTHANE		WGTUG/KG		K	1	20.00000			20.000	20.000	82/11/10 82/11/10
		IN SED	DRY WGT	WATER		2	49.60000				7.20	82/06/03 82/11/10
	SEDIMENT		SILT	WATER		3			45.95700		7.00	82/06/03 82/11/10
	SEDIMENT		CLAY	WATER			4.466700	9.013300	3.002200	6.20	1.00	82/06/03 82/11/10
82302	RADON222	TOT.CT.	ER PC/L	WATER		1	1.000000			1.00	1.00	81/05/20 81/05/20

/TYPA/AMBNT/ESTURY

PGM=INVENT

PAGE:

71

HUNSUN 33 43 53.0 118 04 51.0 2 SUNSET BAY AT NAVY BUOYS

06059 CALIFORNIA ORANGE SANTA ANA RIVER BASIN 140700

HUNTINGTON HARBOUR

HQ 18070201001 0010.680 OFF

21CAOCFC 770210 0999 FEET DEPTH

MEDIUM RMK NUMBER MEAN VARIANCE STAN DEV MAXIMUM MINIMUM BEG DATE END DATE PARAMETER 1 1.000000 1.00 1.00 81/05/20 81/05/20 82303 RADON222 TOTAL PC/L WATER

77

/TYPA/OUTFL/AMBNT/STREAM

ANAHEIM-BAR CH ABCCO3
33 45 17.0 118 02 05.0 2
AT US NAVY RAILROAD BRIDGE
06059 CALIFORNIA ORANGE
CALIFORNIA 140700
SANTA ANA RIVER BASIN
21CAOCFC 851123 HQ 18070201
0000 FEET DEPTH

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
00010	WATER	TEMP	CENT	WATER			21.80400			32.1	13.6	85/10/15 92/03/23
00011	WATER	TEMP	FAHN	WATER	\$		71.24700			89.8	56.5	85/10/15 92/03/23
00061	STREAM	FLOW.	INST-CFS		•					1	.5	87/01/13 87/05/20
00001	• · · · · · · · · · · · · · · · · · · ·	. 2011,	2,101-07-0		J		2.777800			10	ij	85/10/15 88/03/22
					тот		2.275000			10	. 5	85/10/15 88/03/22
00076	TURB	TORTONTO	HACH FTU	WATED	101		6.406200			90.0	. 3	79/03/21 92/03/26
	CNDUCTVY		MICROMHO				1270.000			2500	280	85/10/15 92/03/23
	CNDUCTVY	AT 250	MICROMHO				3651.800			50000	55	79/03/21 92/03/26
00116	INTNSVE	SURVEY	IDENT	WATER			730600.0			730601	730601	92/03/20 92/03/26
00300	DO	SURVE	MG/L	WATER			13.46600			18.3	9.0	86/01/22 92/03/23
00300	50		MG/L	MATER	L		15.38500				15.0	
					тот		14.50500			20.0		85/10/15 89/12/07
00301	50	CATUD	DEDCENT	WATED						20.0	9.0	85/10/15 92/03/23
	DO	SATUR	PERCENT	WATER	\$		163.6700			246.9	92.8	85/10/15 92/03/23
00400	PH		su	WATER			8.785400			9.90	6.47	85/10/15 92/03/23
00403	PH	LAB	su	WATER			8.181100			10.7	6.6	79/03/21 92/03/26
00530	RESIDUE	TOT NFLT	MG/L	WATER			22.88900			88	1	79/08/14 92/03/26
					K		5.000000			5	5	79/03/21 92/03/23
					TOT		13.25700			. 88	1	79/03/21 92/03/26
00535	RESIDUE	VOL NFLT	MG/L	WATER			11.17700			35	1	79/08/14 92/03/26
					K		4.904800			5	3	79/03/21 92/03/23
					TOT			36.64400	6.053400	35	1	79/03/21 92/03/26
00550	OIL-GRSE	TOT-SXLT	MG/L	WATER			31.00000			31.0	31.0	86/10/14 86/10/14
					K		5.000000			5.0	5.0	85/10/15 85/10/15
					TOT	2	18.00000	338.0000	18.38500	31.0	5.0	85/10/15 86/10/14
00610	NH3+NH4-	N TOTAL	MG/L	WATER		18	.3883300	.1372700	.3705100	1.500	.060	79/04/17 92/03/26
					K	21	.1000000	.0000000	.0000000	.100	. 100	79/03/21 92/03/23
					TOT	39	.2330800	.0826170	.2874300	1.500	. 060	79/03/21 92/03/26
00612	UN-IONZD	NH3-N	MG/L	WATER	\$	6	.1177100	.0361470	.1901200	. 499	.015	86/03/19 89/12/07
00619	UN-IONZD	NH3-NH3	MG/L	WATER	\$	6	.1431200	.0534390	.2311700	. 606	.018	86/03/19 89/12/07
00625	TOT KJEL	N	MG/L	WATER		39	1.666700			6.900	. 300	79/03/21 92/03/26
00650		P04	MG/L	WATER			1.169700			5.30	.10	79/03/21 92/03/26
					K	6	.4333300		.1633000	.50	.10	79/04/17 89/12/07
					TOT	39	1.056400			5.30	.10	79/03/21 92/03/26
00680	T ORG C	С	MG/L	WATER		ă		44.08400		20.0	8.5	85/10/14 86/10/13
	TOT HARD	CACO3	MG/L	WATER		Ř		8897.400		268	32	92/03/20 92/03/26
	ARSENIC	AS. TOT	üĞ/L	WATER	K	ă	16.00000			20	10	85/10/14 87/05/20
		CD, TOT	ug/L	WATER		ĭ	2.200000	20.0000	0.231000	2	2	85/10/14 85/10/14
02027	~~~m	05, 101	uu, c	7177 I ET	K	Ā		36 21400	6.017800		7	92/03/20 92/03/26
					τοτ		15.13300			20	2	85/10/14 92/03/26
					101	,	10.1000	55.21000	,.455400	20	2	00/10/14 92/05/20

/TYPA/OUTFL/AMBNT/STREAM

PGM=INVENT

PAGE:

78

ANAHEIM-BAR CH ABCC03
33 43 17.0 118 02 05.0 2
AT US NAVY RAILROAD BRIDGE
06059 CALIFORNIA ORANGE
CALIFORNIA 140700

SANTA 4NA RIVER BASIN 21CADCFC 851123

HQ 18070201

0000 FEET DEPTH

MEDIUM RMK NUMBER MEAN VARIANCE STAN DEV MAXIMUM MINIMUM BEG DATE END DATE PARAMETER 6 4.966700 4.326700 2.080100 7 2 86/04/14 88/01/19 01034 CHROMIUM CR. TOT UG/L WATER 30 18 14.38900 144.1400 12.00600 3 85/10/14 92/03/26 30 47 50 50 30 2 85/10/14 92/03/26 47 8 85/10/14 92/03/26 50 10 86/01/21 92/03/23 50 8 85/10/14 92/03/26 550 550 85/10/14 85/10/14 TOT 24 12.03300 124.8500 11.17300 16 19.37500 125.1800 11.18900 01042 COPPER CU. TOT UG/L WATER 8 21.25000 155.3600 12.46400 24 20.00000 129.7400 11.39000 TOT 01045 IRON FE, TOT UG/L WATER 1 550.0000 14 10.67900 54.52300 7.384000 29 2 85/10/14 92/03/26 WATER 01051 LEAD PB. TOT UG/L 2 86/01/21 32/03/26 2 85/10/14 92/03/26 10 9.400000 141.6000 11.90000 40 TOT 24 10.14600 86.64100 9.308100 40 10 92/03/20 92/03/26 01067 NICKEL NI, TOTAL UG/L WATER K 8 32.50000 192.8600 13.88700 40 1 39.00000 39.0 39.0 92/03/26 92/03/26 01077 SILVER AG, TOT UG/L WATER 2.0 92/03/20 92/03/26 7 8.857200 9.142900 3.023700 10.0 2.0 92/03/20 92/03/26 2.0 92/03/20 92/03/26 20 85/10/14 92/03/26 10 87/02/10 87/03/10 10 85/10/14 92/03/26 16 85/10/14 87/05/20 .050 85/10/15 85/10/15 8 12.62500 121.4100 11.01900 39.0 TOT 01092 ZINC ZN. TOT UG/L WATER 22 76.63600 2917.800 54.01600 200 2 15.00000 50.00000 7.071100 20 24 71.50000 2969.100 54.48900 200 TOT 3 25.33300 165.3300 12.85800 40 01147 SELENIUM SE.TOT UG/L WATER K 1 .0500000 34259 DELTABHO TOTUG/L WATER .050 TOTUG/L WATER 1 .1000000 .100 .100 85/10/15 85/10/15 34351 ENDSULSF .050 85/10/15 85/10/15 TOTWUG/L WATER 1 .0500000 .050 34356 B-ENDO SULFAN .050 85/10/15 85/10/15 .050 34361 A-ENDO SULFAN TOTWUG/L WATER K 1 .0500000 1016 TOTWUG/L WATER 1 1.000000 1.000 1.000 85/10/15 85/10/15 34671 PCB MG/L WATER 2 .1000000 .0000000 .0000000 .10 .10 85/10/15 86/10/14 38260 MBAS 1 .5000000 .500 85/10/15 85/10/15 .500 39034 PERTHANE WHL SMPL UG/L WATER 39055 SIMAZINE WH.WATER (UG/L) WATER
39330 ALDRIN TOT UG/L WATER
39337 ALPHABHC TOTUG/L WATER 1 .5000000 .5 85/10/15 85/10/15 . 5 1 .0500000 .050 .050 85/10/15 85/10/15 1 .0500000 .050 .050 85/10/15 85/10/15 .050 85/10/15 85/10/15 TOTUG/L WATER 1 .0500000 .050 39338 BETA BHC .300 85/10/15 85/10/15 39350 CHLRDANE TECHSMET TOT UG/L WATER 1 .3000000 .300 1 .0500000 WHL SMPL UG/L WATER .050 .050 85/10/15 85/10/15 DDD 39360 1 .0500000 .050 WHL SMPL WATER .050 85/10/15 85/10/15 UG/L 39365 DDE 1 .1000000 .100 UG/L WATER .100 85/10/15 85/10/15 WHL SMPL 39370 TOO .050 .050 85/10/15 85/10/15 TOTUG/L WATER 1 .0500000 39380 DIELDRIN TOT UG/L WATER 1 .1000000 .100 .100 85/10/15 85/10/15 39390 ENDRIN 1.000 1.000 85/10/15 85/10/15 TOTUG/L WATER 39400 TOXAPHEN 1 1.000000 .050 1 .0500000 .050 85/10/15 85/10/15 39410 HEPTCHLR TOTUG/L WATER 1 .0500000 .050 .050 85/10/15 85/10/15 39420 HPCHLREP TOTUG/L WATER 39480 MTHXYCLR WHL SMPL UG/L WATER 1 .3000000 .300 .300 85/10/15 85/10/15

/TYPA/OUTFL/AMBNT/STREAM

PGM=INVENT

PAGE:

79

ANAHEIM-BAR CH ABCCO3 33 45 17.0 118 02 05.0 2 AT US NAVY RAILROAD BRIDGE 06059 CALIFORNIA ORANGE CALIFORNIA 140700 SANTA ANA RIVER BASIN 21CAOCFC 851123 0000 FEET DEPTH

HQ 18070201

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DE	MAXIMUM	MINIMUM	BEG DATE END DATE
39488	PCB-1221		TOTUG/L	WATER	K	1	1.000000			1.000	1.000	85/10/15 85/10/15
39492	PCB-1232		TOTUG/L	WATER	K	1	1.000000			1.000	1.000	85/10/15 85/10/15
39496	PCB-1242		TOTUG/L	WATER	K	1	1.000000			1.000	1.000	85/10/15 85/10/15
39500	PCB-1248		TOTUG/L	WATER	K	1	1.000000			1.000	1.000	85/10/15 85/10/15
39504	PCB-1254		TOTUG/L	WATER	K	1	1.000000			1.000	1.000	85/10/15 85/10/15
39508	PCB-1260		TOTUG/L	WATER	K	1	1.000000			1.000	1.000	85/10/15 85/10/15
39530	MALATHN	WHL SMP	_ UG/L	WATER	K	1	1.000000			1.000	1.000	85/10/15 85/10/15
39540	PARATHN	WHL SMPI	_ UG/L	WATER	K	1	1.000000			1.000	1.000	85/10/15 85/10/15
39730	2.4-D	WHL SMPI	_ UG/L	WATER	K	1	5.000000			5.000	5.000	85/10/15 85/10/15
39760	SILVEX	WHL SMP	ug/L	WATER	K	1	1.000000			1.000	1.000	85/10/15 85/10/15
39782	LINDANE	WHL SMP	. UG/L	WATER	K	1	.0500000			. 050	. 050	85/10/15 85/10/15
71850	NITRATE	TOT-NO3	MG/L	WATER		26	7.856500	115.4200	10.74300	56.0	. 4	86/01/21 92/03/26
					K	10	1.163000	2.944400	1.715900	4.4	. 2	79/03/21 90/06/19
					TOT	36	5.997200	92.44400	9.614800	56.0	. 2	79/03/21 92/03/26
74041	WOF.	SAMPLE	LIPDATED	WATER		62	888430.0	3283E+05	18122.00	920708	860715	79/03/21 92/03/26

/TYPA/AMBNT/STREAM

PGM=INVENT

PAGE:

80

LABC01

33 45 22.0 118 05 45.0 2 AT PUMP STATION INLET 06059 CALIFORNIA

ORANGE SAN GABRIEL RIVER BASIN 140700 LOS ALIMITOS RETARDING

21CAOCFC HQ 18070106002 0001.340 OFF

	DADA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAYTMIM	MINIMUM	BEG DATE END DATE
00010	WATER	TEMP	CENT	WATER	TAMES.			21.61100		26.0	12.0	73/05/30 81/05/19
00011	WATER	TEMP	FAHN	WATER	\$			70.03100		78.8	53.6	73/05/30 81/05/19
00061	STREAM	FLOW,	INST-CFS		j	- 6	.6250000			70.0	0	74/07/09 80/05/22
00076			HACH FTU		•	_		816.8000		90.0	. 6	73/05/30 81/05/19
	CNDUCTVY		MICROMHO					35626000		14000	525	77/01/25 81/05/19
	CNDUCTVY	AT 25C	MICROMHO			12		98646000		36600	232	73/05/30 81/05/19
00300	DO	A1 230	MG/L	WATER				5.308700		11.3	4.6	75/01/07 81/05/19
00300	DO		MG/L	MMIEK		1	15.00000	3.300700	2.304100	15.0	15.0	78/11/07 78/11/07
					τοτ	9		9.125400	3 020800	15.0	4.6	75/01/07 81/05/19
00301	DO	SATUR	PERCENT	WATER	101			1140.700		166.7	50.0	75/01/07 81/05/19
00335			MG/L	WATER	•			9202.400		229.0	51.0	76/04/07 78/11/07
00400	COD PH	FOMFEAEF	SU	WATER				.2180800		9.00	7.70	77/01/25 81/05/19
00403	PH	LAB	SU	WATER			7.850000			8.9	7.2	73/05/30 81/05/19
							162.0000	. 2300300	.4/90100	162	162	73/05/30 73/05/30
	HCO3 ION	HC03	MG/L	WATER		•	.0000000			162		73/05/30 /3/05/30
	CO3 ION	CO3	MG/L	WATER		1,1		41427.00	203 5400	634	,0	
		TOT NELT	MG/L	WATER						29	11	74/01/07 81/05/19
		VOL NELT	MG/L	WATER				156.2800			1	78/11/07 81/05/19
	OIL-GRSE		MG/L	WATER		2		.0200200		5.2	5.0	75/07/01 80/10/14
00010	NH3+NH4-	NIUIAL	MG/L	WATER		5		.0170000		.500	. 200	75/07/01 81/05/19
					K			.0055571		. 300	. 100	73/05/30 80/05/22
					TOŢ			.0184990		.500	. 100	73/05/30 81/05/19
	UN-IONZD	NH3-N	MG/L	WATER	\$	12		.0001850		.035	.0008	73/05/30 81/05/19
	UN-IONZD	NH3-NH3	MG/L	WATER	*	12				. 043	. 001	73/05/30 81/05/19
	TOT KJEL	N	MG/L	WATER				1.985900		5.700	. 300	73/05/30 81/05/19
00650		P04	MG/L	WATER				.5162900	.7185300	2.57	.30	73/05/30 81/05/19
		CA, DISS	MG/L	WATER		1	73.00000			73.0	73.0	73/05/30 73/05/30
		MG,DISS	MG/L	WATER		1	34.00000			34.0	34.0	73/05/30 73/05/30
00930	SODIUM	NA,DISS	MG/L	WATER		1	400.0000			400.00	400.00	73/05/30 73/05/30
00935	PTSSIUM	K,DISS	MG/L	WATER		1	17.20000			17.20	17.20	73/05/30 73/05/30
00940	CHLORIDE	TOTAL	MG/L	WATER		1	575.0000			575	575	73/05/30 73/05/30
00945	SULFATE	SO4-TOT	MG/L	WATER		1	247.0000			247	247	73/05/30 73/05/30
00950	FLUORIDE	F,DISS	MG/L	WATER		1	1.000000			1.00	1.00	73/05/30 73/05/30
00955	SILICA	DISOLVED	MG/L	WATER		11	6.609100	14.85900	3.854700	14.0	2.0	73/05/30 80/10/14
01002	ARSENIC	AS, TOT	UG/L	WATER		4	11.75000	27.58300	5.252000	15	4	77/01/25 81/05/19
01020		B, DISS	UG/L	WATER		1	550.0000			550	550	73/05/30 73/05/30
		CD, TOT	UG/L	WATER		5	5.600000	5.300000	2.302200	8	2	76/04/07 81/05/19
	CHROMIUM		UG/L	WATER		3	25.66700	780.3400	27.93500	56	1	76/04/07 78/11/07
	- · · · · · · · · · · · · · · · · · · ·				K	3		8.333400		10	5	80/05/22 81/05/19
					TOT	6		423.7700		56	ĺ	76/04/07 81/05/19
					• • •	•				• •	-	· · · · · · · · · · · · · · · · · · ·

PGM=INVENT

PAGE:

81

/TYPA/AMBNT/STREAM

LABC01 33 45 22.0 118 05 45.0 2 AT PUMP STATION INLET

06059 CALIFORNIA ORANGE SAN GABRIEL RIVER BASIN 140700

LOS ALIMITOS RETARDING 21CADCFC

HQ 18070106002 0001.340 OFF

	DADA	METER		MEDIUM	RMK	NUMBER	MEAN	VADTANCE	STAN DEV	MAYTMIM	MINIMUM	BEG DATE E	ND DATE
01042		CU. TOT	UG/L	WATER	ivini.					44	16	76/04/07 8	
01051	LEAU	PB,TOT	UG/L	WATER			128.3300		111.9500	330	36	74/01/07 8	
					K	2	11.50000	4.500000	2.121300	13	10	80/05/22 8	1/05/19
					TOT	8	99.12500	11878.00	108.9900	330	10	74/01/07 8	1/05/19
01092	ZINC	ZN. TOT	UG/L	WATER		6	105.6700	5333.500	73.03100	220	16	76/04/07 8	1/05/19
		SE.TOT	UG/L	WATER				288.0000		33	و	77/01/25 8	
		U			K		2.000000		.0000000	2	5	78/11/07 8	
					τοτ	_		216.3300		33	2		
21507	TOT 001 T			WATER	101							77/01/25 8	
			/100ML	WATER				40120000	6334.000	15000	2400	75/01/07 8	
	PHENOLS	TOTAL	UG/L	WATER	K	1	50.00000			50	50	80/10/14 8	30/10/14
38260	MBAS		MG/L	WATER		1	.1400000			. 14	.14	80/10/14 8	30/10/14
46570	CAL HARD	CA MG	MG/L	WATER	\$	1	322.2900			322	322	73/05/30 7	3/05/30
	DISS SOL	SUM	MG/L	WATER			1431.000			1431	1431	73/05/30 7	
	NITRATE	TOT-NO3	MG/L	WATER		_		26 24500	5.123000	13.4	.1	73/05/30 8	
/1000	MILKAIL	101-1103	mar L	MAIER	~	3					• •		
					K		.3000000		.1732100	. 4	• ‡	74/07/09 8	
					TOT	12		24.09400	4.908500	13.4	. 1	73/05/30 8	31/05/19
71885	IRON	FE	ug/L	WATER		1	4800.000			4800.00	4800.00	77/01/25 7	77/01/25
71900	MERCURY	HG. TOTAL	UG/L	WATER		2	.7000000	.0000000	.0000000	.7	. 7	77/01/25 7	78/11/07
					K	2	2.000000		1.414200	3.0	1.0	80/10/14 8	
					TOT	_		1.230000			1.5		
					101	4	1.220000	1.250000	1.103100	3.0	• /	77/01/25 8	31/03/19

/TYPA/AMBNT/WELL

PGM=INVENT

PAGE:

82

CA0002364005 B40

33 45 28.0 118 05 50.0 2 ALAMITOS BARRIER PROJECT 06037 CALIFORNIA

LOS ANGELES 140692

21CALAFD

18070106

	PAR	AMETER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE I	STAG GNE
00010	WATER	TEMP	CENT	WATER	\$	5	22.00000	.4014300	.6335800	22.8	21.1	76/02/05	76/03/12
00011	WATER	TEMP	FAHN	WATER		5	71.60000	1.305700	1.142700	73.0	70.0	76/02/05	76/03/12
00056	FLOW	RATE	GPD	WATER		. 5	132940.0	4792E+06	69225.00	213299	71100	76/02/05	76/03/12
00310	BOD	5 DAY	MG/L	WATER		5	45.20000	724.7000	26.92000	90.0	17.0	76/02/05	76/03/12
00400	PH		su	WATER		5	7.630000	.0420530	. 2050700	7.80	7.30	76/02/05	76/03/12
00545	RESIDUE	SETTLBLE	ML/L	WATER		6	.1466700	.0304670	.1745500	. 5	. 05	76/02/05	76/03/12
00745	SULFIDE	TOTAL	MG/L	WATER		3	11.66700	33.33400	5.773500	15.00	5.00	76/02/05	76/03/10
					L	1	15.00000			15.00	15.00	76/03/12	76/03/12
					TOT	4	12.50000	25.00000	5.000000	15.00	5.00	76/02/05	76/03/12
72005	SAMPLE	SOURCE	CODE	WATER		5	1.000000	.0000000	.0000000	1	1	76/02/05	76/03/12
85001	BOD	5 DAY	#/DAY	WATER		5	34.57400	882.8900	29.71400	73	2	76/02/05	76/03/12

PGM=INVENT

PAGE:

83

/TYPA/AMBNT/STREAM

BCC02
33 45 35.0 118 02 30.0 3
AT BOLSA AVENUE EXTENSION BRIDGE
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
BOLSA CHICA CHANNEL D/S C02/C03
21CAOCFC 18070201

		AMETER		MEDIUM	RMK	NUMBER	MEAN		STAN DEV		MINIMUM		END DATE
00010	WATER	TEMP	CENT	WATER			17.84800	20.76500	4.556800	30.0	8.0	73/04/06	
					J		24.00000			24.0	24.0	73/06/04	
					TOT		17.88100			30.0	8.0		92/02/07
00011	WATER	TEMP	FAHN	WATER	\$	191	64.18400	67.73200	8.230000	86.0	46.4	73/04/06	92/02/07
00060	STREAM	FLOW	CFS	WATER		42	86.03300	26532.00	162.8900	792	. 3	76/02/03	78/05/09
00061	STREAM	FLOW.	INST-CFS	WATER		91	104.2500	89320.00	298.8600	2330	. 3	76/02/03	92/02/07
					J	76	16.96600	3000.400	54.77600	400	0	73/04/06	88/07/21
					TOT	167	64.52900	51683.00	227.3400	2330	0	73/04/06	92/02/07
00076	TURB	TRBIDMTR	HACH FTU	WATER		179	21.49400	2146.600	46.33200	390.0	. 2	73/05/08	92/02/05
00093	SOLIDS	FLOAT	MG/L	WATER		4	1142.500	235890.0	485.6900	1450.0	420.0	81/09/14	82/09/20
	CNDUCTVY	FIELD	MICROMHO			125	1508.400	3470400	1862.900	16400	40	77/01/25	92/02/07
	CNDUCTVY	AT 25C	MICROMHO			198	1480.500	7254100	2693.300	37000	63	66/07/07	92/02/05
00116	INTHSVE	SURVEY	IDENT	WATER			730600.0	.0000000	.0000000	730601	730601	73/11/17	92/02/07
00300	DO	• • • • • • • • • • • • • • • • • • • •	MG/L		,	156	8.612700	11.21200	3.348400	15.0	. 8	74/10/08	91/12/11
					Ł		15.55600			20.0	15.0	78/01/06	89/05/22
					TOT		8.991400			20.0	. 8	74/10/08	91/12/11
00301	DO	SATUR	PERCENT	WATER	\$		93.15500			238.1	8.5		91/12/11
00310	800	5 DAY	MG/L	WATER	•	8		36.49700		21.0	3.0		81/05/19
00335	COD	LOWLEVEL	MG/L	WATER		•	55.45200			133.0	12.0		79/10/08
00000	000				K	1	2.000000			2.0	2.0		78/02/09
					TOT	43	54.20900	1097,100	33,12300	133.0	2.0		79/10/08
00400	PH		su	WATER			7.768900			9.40			92/02/07
00403	PH	LAB	šu	WATER			7.813900			10.2	6.2		92/02/05
00400					K		2.000000			2.0			86/11/18
					TOT			.5161400	.7184300		2.0		92/02/05
00405	C02		MG/L	WATER			8.533300			15.0	5.0		84/05/14
	HCO3 ION	HC03	MG/L	WATER					156.2000				86/10/13
	CO3 ION	CO3	MG/L	WATER		ă		792.3400		70	14		73/06/04
	RESIDUE	DISS-105		WATER		ĭ	9.000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ġ	وَ		73/10/02
	RESIDUE	TOT NELT		WATER		172		44665.00	211.3400	_	. 8		92/02/05
00000	KESTOGE	101 M E1	ma/ L	110161	K				1.955900		. 5		91/11/06
					TOT				200.6900		.5		92/02/05
00525	RESIDUE	VOL NFLT	MG/L	WATER					23.07700				92/02/05
00333	RESIDUE	VOL NELI	MG/L	MAILK	ĸ				2.012600				91/08/05
					TOT	140			21.82200	-			92/02/05
00550	OIL-GRSE	TOT CYLT	MG/L	WATER	101				38.70200				88/03/07
00000	01L- GR3E	IOI-SALI	mu/ L	MAILN	K	7			2.829000		. ī		87/12/16
					TOT	38			36.71900		. i		88/03/07
00610	NH3+NH4-	N TOTAL	MG/L	WATER	101				.5070000				92/02/05
00010	- 4 HY T CTIVI	NIVIAL	MG/L	MAILK		121	. 31/0000	. 23/0300		5.100		, 0, 00, 04	22,02,00

/TYPA/AMBNT/STREAM

PGM=INVENT

PAGE:

BCC02

33 45 35.0 118 02 30.0 3
AT BOLSA AVENUE EXTENSION BRIDGE
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700

BOLSA CHICA CHANNEL D/S C02/C03 21CAOCFC 18070201

		METER		MEDIUM	RMK	NUMBER	MEAN		STAN DEV		MINIMUM	BEG DATE END DATE
	NH3+NH4-		MG/L	WATER	K			.0085306		.500	.050	73/04/06 91/11/06
	NH3+NH4-		MG/L	WATER	TOT			.1944800		3.100	.040	73/04/06 92/02/05
	UN-IONZD	NH3-N	MG/L	WATER	\$.0012037		. 284	.0001	73/04/06 89/12/07
	UN-IONZD	NH3-NH3	MG/L	WATER	\$.0017795		. 346	.0002	73/04/06 89/12/07
00625	TOT KJEL	N	MG/L	WATER				29.15800		74.800	.300	73/05/08 92/02/05
					K			.0420000		.500	.100	74/07/09 92/01/05
	-				TOT			28.56000		74.800	.100	73/05/08 92/02/05
00650	T P04	P04	MG/L	WATER				32.48500		52.00	. 06	73/04/06 92/02/05
					K			.0498880		.50	.01	73/10/02 89/01/18
					TOT			29.50200				73/04/06 92/02/05
	PHOS MUD		MG/KG-P	WATER				269850.0			8.0	80/10/14 86/10/14
	T ORG C	C	MG/L	WATER				7.163500	2.676500		12.0	83/11/08 86/10/13
	CYANIDE	SEDMG/KG	DRY WGT		K	1	.0300000			. 03	. 03	80/10/14 80/10/14
00747	SULFIDE	IN SED.	MG/KG	WATER		1	2.600000			2.60	2.60	82/11/09 82/11/09
					K	5		. 2570000			.10	80/10/14 85/10/15
					TOT			.6760000		2.60	.10	80/10/14 85/10/15
	TOT HARD	CACO3	MG/L	WATER				19996.00			41	73/06/04 92/02/05
	CALCIUM	CA, DISS	MG/L	WATER				939.8100		120.0		66/07/07 86/10/13
	MGNSIUM	MG, DISS	MG/L	WATER				69.81600		46.0	20.0	66/07/07 86/10/13
00930		NA, DISS	MG/L	WATER				62518.00			208.00	73/05/08 86/10/13
	PTSSIUM	K,DISS	MG/L	WATER		6		20.79900			4.50	73/05/08 86/10/13
	CHLORIDE	TOTAL	MG/L	WATER		7		170790.0		1268	106	66/07/07 86/10/13
	SULFATE	SO4-TOT	MG/L	WATER		6		4812.400		490		73/05/08 86/10/13
	FLUORIDE		MG/L	WATER				.1160000				73/05/08 86/10/13
00955	SILICA	DISOLVED	MG/L	WATER	V			22.47300				73/04/06 86/10/13
					K			.0833340				76/09/10 80/03/03
01000	45051150		110.41	W4.TED	TOT			23.12900				73/04/06 86/10/13
01002	ARSENIC	AS, TOT	UG/L	WATER	.	, 9		35.02800		• -	_	76/04/06 84/05/14
					K			39.23300				73/04/06 87/05/20
01003	ADOCUTO	05040740	DDV WOT	WATER	TOT			35.81200 52.43800				73/04/06 87/05/20 78/11/07 86/10/14
	ARSENIC	SEDMG/KG						10258.00				
01020		B,DISS	UG/L	WATER								73/05/08 86/10/13
01027	CADMIUM	CD, TOT	UG/L	WATER	K			252.2400 70.11500				73/07/16 85/10/14 73/04/06 92/02/05
					TOT			207.0700				73/04/06 92/02/05
01000	00 4440	DOV WAT	40 (KO OD	WATEN	101			.0467860				78/11/07 85/10/15
01028	CD MUD	DRY WGT	MG/KG-CD	MAILK	K	9		.0276300				80/05/13 86/10/14
					тот	14		.0278300			.15	78/11/07 86/10/14
01020	CUDONTUN	CEDMC /VC	DRY WGT	WATED	101			57.68900				78/11/07 86/10/14
01029	CHROMIUM	SEUMU/KG	וטא זאע	MAICK		14	12.00000	37.00300	7.333300	47.00	1.00	70/11/0/ 00/10/14

PGM=INVENT

PAGE:

85

/TYPA/AMBNT/STREAM

BCC02
33 45 35.0 118 02 30.0 3
AT BOLSA AVENUE EXTENSION BRIDGE
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
BOLSA CHICA CHANNEL D/S C02/C03
21CAOCFC 18070201
0000 FEET DEPTH

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
01034	CHROMIUM		UG/L	WATER	******			125.4000		50	2	74/01/07 88/03/22
• • • • • • • • • • • • • • • • • • • •		,			K	40	11.67500	314.2300	17.72600	100	1	74/07/09 92/02/05
					TOT	95	12.95300	203.6100	14.26900	100	1	74/01/07 92/02/05
01042	COPPER	CU. TOT	UG/L	WATER		119	31.74900	717.3700	26.78400	200	3	73/07/16 92/02/05
		•			K	10	13.20000	187.9600	13.71000	50	4	78/04/07 90/06/19
					TOT	129	30.31100	699.3400	26.44500	200	3	73/07/16 92/02/05
01043	COPPER	SEDMG/KG	DRY WGT	WATER				161.4400		59.00	2.20	78/11/07 86/10/14
01045	IRON	FE, TOT	UG/L	WATER				7200.000	84.85300	640	520	80/01/22 83/11/07
					K		200.0000			200	200	85/10/14 85/10/14
					TOT			51734.00		640	200	80/01/22 85/10/14
01051	LEAD	PB,TOT	UG/L	WATER				13717.00		630	4	73/04/06 92/02/05
					K			255.5600		70	1	75/01/06 90/06/19
					TOT			11796.00		630	1	73/04/06 92/02/05
01052		SEDMG/KG	DRY WGT					1116.000	33.40600	90.00	. 69	78/11/07 85/10/15
01067	NICKEL	NI,TOTAL	UG/L	WATER			40.00000			40	40	91/10/26 91/10/26
					K			.0000000		40	40	92/01/05 92/02/05
					TOT			.0000000		40	40	91/10/26 92/02/05
	SILVER	AG, TOT	UG/L	WATER	K			12.80000		10.0	2.0	91/10/26 92/02/05
01092	ZINC	ZN, TOT	UG/L	WATER				7502.700		420	6	73/04/06 92/02/05
					_ K			97.21900		30	2	73/07/16 90/06/19
					TOT			7251.600		420	7 70	73/04/06 92/02/05
01093		SEDMG/KG	DRY WGT					8445.400	91.90400	378.00	7.70	78/11/07 86/10/14
01143		SILICATE	ug/L SI		K		.1000000	22 02100	E 016400	.1	1	83/05/10 83/05/10
01147	SELENIUM	SE, TOT	UG/L	WATER					5.816400	20	1	73/04/06 82/06/01
					K				6.505600	20 20	2	77/07/12 87/05/20
01140	OF: 51111	05040 440	DDV WOT	WATER	тот				6.062200	. 24	. 03	73/04/06 87/05/20 80/05/13 81/05/19
01148	SELENIUM	SEDMG/KG	DRY WGT	MAIEK	K				.4548500	1.50	.06	78/11/07 86/10/14
					тот	13			.4413900	1.50	.03	78/11/07 86/10/14
01170	FE MUD	DRY WGT	MG/KG-FE	WATED	101				5910.200		7300.00	83/11/08 86/10/14
01170 01501		TOTAL	PC/L	WATER					12.34700	34	.7	83/05/10 89/03/08
01201	ALPHA	TOTAL	PULL	MAIER	K	1	17.00000	132.4400	12.54/00	17	17	82/11/09 82/11/09
					TOT	ġ		134 8000	11.61100		.7	82/11/09 89/03/08
01502	ALPHA-T	ERROR	PC/L	WATER	101	•			6.037600	14		84/05/15 87/12/16
03501		TOTAL	PC/L	WATER		7			25.21100	55		84/05/15 89/03/08
03301	DEIM	IUIAL	FU/ L	MAIFI	ĸ	,			8.980300	20	7	82/11/09 83/05/10
					тот	9			22.15400	55	-6	82/11/09 89/03/08
03502	BETA-T	ERROR	PC/L	WATER	.01				7.312300	21	3	84/05/15 87/12/16
09501		TOTAL	PC/L	WATER					.2771300	. 6		85/10/15 87/05/20
05001	NA-220	, U , AL		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		·				, ,	. •	22.22.22

PAGE:

86

/TYPA/AMBNT/STREAM

BCC02
33 45 35.0 118 02 30.0 3
AT BOLSA AVENUE EXTENSION BRIDGE
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
BOLSA CHICA CHANNEL D/S C02/C03
21CAOCFC 18070201

		METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE	END DATE
		ERROR	PC/L	WATER		3	.0733330	.0006333	.0251660	.1	.05	85/10/15	87/05/20
31507	TOT COLI N	MPN COMP	/100ML	WATER		104	187180.0	2255E+08	474950.0	2400000	200	74/12/04	82/09/21
					L	2	2400000	.0000000	.0000000	2400000	2400000	80/03/03	81/10/02
					TOT	106	228930.0	3127E+08	559280.0	2400000	200	74/12/04	
31615	FEC COLI N	MPNECMED	/100ML	WATER		3	370640.0	3989E+08	631660.0	1100000	930	75/10/07	
31677	FECSTREP N	MPNADEVA	/100ML	WATER			430.0000			430	430	75/10/07	
32730	PHENOLS	TOTAL	UG/L	WATER	K	12	35.83300	317.4300	17.81700		10	77/01/25	
32860	INVALID	PAR	NUMBER	WATER	K		.0100000			.0100000	.0100000	78/04/11	
34257	BETA BHC S	SEDUG/KG	DRY WGT	WATER	K			888,2300	29.80300		.002	82/11/09	
	DELTABHO		TOTUG/L		ĸ				3.152200	10.000	.002	82/11/09	
	DELTABHC S	SEDUG/KG	DRY WGT		ĸ				30.91500	100.000	1.000	82/11/09	
	DIETHYLP H				ĥ		10.00000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00.5.000	10.000	10.000	82/11/09	
	DIETHYLP H				ĸ		10.00000			10.000	10.000	82/11/09	
	ENDSULSE		TOTUG/L		Ĥ			8.090200	2.844300	10.000	. 003	82/11/09	
	ENDSULSE S	SEDUG/KG			Ř				89.41700	300.000	.003	82/11/09	
		SULFAN	TOTWUG/L		ĸ		1.023800			10.000	.002	82/11/09	
	BENDOSUL S				ĸ		19.70000			100.000	.002	82/11/09	
		SULFAN	TOTWUG/L		ĸ		1.020200			10.000	.002	82/11/09	
	AENDOSUL S		DRY WGT		ĥ				29.90000	100.000	.002	82/11/09	
	TROLFLMT				ĥ	11	.0020000	034.0000	29.30000	.002	.002	89/01/18	
34671	PCB	1016	TOTWUG/L		ĸ	13		1544900	.3930600	1.000	.030	81/11/10	
38260	MBAS	1010	MG/L	WATER	•				.2028500	.52	.05	74/10/08	
00200				77.7 EN	K	á			.0450000	. 10	.01	74/12/04	
					TOT	16	.1362500			.52	.01	74/10/08	
39034	PERTHANE I	IOMS INW	UG/L	WATER	K		1.706400			10.000	.003	74/01/07	
	SIMAZINE	MUD	UG/GK	WATER	ĸ		706.5100		1546.000	5000.00	.10	79/05/09	
	SIMAZINE Y		(UG/L)	WATER	ĥ		1.600000			5000.00	. 10	79/05/09	
	ALPHABHC S		DRY WGT		ĥ				31.69800	100.000	.002	82/11/09	
	ALDRIN	SEDUG1 KG	TOT UG/L		^	3		.4960100		1.000	.004	88/03/08	
39330	MEDRIN		TOT GG/L	MAIER	K	22			.4900700	1.000	.004		
					TOT		.4785800			1.000	.002	74/01/07	
20232	ALDRIN S	SEDUG/KG	DRY WGT	WATED	101		.0040000	. 2409000	. 4500200	.004	.002	74/01/07	
39333	WEDKIN .	SEDUG/ KG	DRI MGI	MAICK	κ			E22 2200	23.09400	100.00		89/01/18	
					TOT		14.83400				.50	78/11/07	
30327	ALPHABHC		TOTUG/L	WATED	K		.1182000			100.00	.004	78/11/07 83/05/09	
	BETA BHC		TOTUG/L		ĸ		.1202000						
	GAMMABHC I	TNDANE	TOT.UG/L			10	.0180000	. 0333470	. 509/500	1.000	.002	83/05/09 74/01/07	
33340	GAMMADIC I	LINDANE	101.UG/L	RAIER	K	_		2227100	.4729800	.018 1.000	.018		
					TOT						.010	75/07/01	
					101	16	. 3672300	. 2520000	.4816600	1.000	.010	74/01/07	04/02/12

PGM=INVENT

PAGE:

87

/TYPA/AMBNT/STREAM

BCC02
33 J5 35.0 118 02 30.0 3
AT BOLSA AVENUE EXTENSION BRIDGE
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
BOLSA CHICA CHANNEL D/S C02/C03
21CAOCFC 18070201

		METER		MEDIUM	RMK	NUMBER	MEAN		STAN DEV		MINIMUM		END DATE
	GBHC-MUD		DRYUG/KG		K		12.62500	67.14200	8.194000	20.00	. 50	78/11/07	
39350	CHLRDANE	TECHEMET	TOT UG/L	WATER		1	.1000000			.100	.100	78/04/11	
					K		.5446100			1.000	.006	74/01/07	
					TOT		.5260800			1.000	.006	74/01/07	89/01/18
			MUDUG/KG		K	18	57.52800	13374.00	115.6500	500.00	.01	78/11/07	89/01/18
39360	DDD	WHL SMPL	UG/L	WATER		1	.1500000			. 150	.150	88/01/20	88/01/20
					_ K		.4320500			1.000	.002	74/01/07	
					TOT		.4197800	.2276200	.4770900	1.000	.002	74/01/07	89/01/18
39363	DDD	MUD	UG/KG	WATER			6.000000			6.00	6.00	88/03/08	88/03/08
					K		16.55900			100.00	.002	78/11/07	89/01/18
					TOT	18	15.97200	493.8300	22.22200	100.00	.002	78/11/07	89/01/18
39365	DDE	WHL SMPL	UG/L	WATER	K	23	.4140900	.2315800	.4812200	1.000	.002	74/01/07	89/01/18
39368	DDE	MUD	UG/KG	WATER	K	18	15.69500	501.0900	22.38500	100.00	.002	78/11/07	89/01/18
39370	DDT	WHL SMPL	UG/L	WATER		1	1.300000			1.300	1.300		88/01/20
					K	23	.4645700	.2317100	.4813600	1.000	.002		89/01/18
					TOT		.4993800			1.300	.002		89/01/18
39373	DDT	MUD	UG/KG	WATER	K	18	29.91700	4648.200	68.17800	300.00	.002	78/11/07	
39380	DIELDRIN		TOTUG/L	WATER	K	24	.4397500	.2347600	.4845200	1.000	.002	74/01/07	
39381	DIELDRIN		DISUG/L	WATER	K		10.25000			20.000	.500		80/05/13
39383	DIELDRIN	SEDUG/KG	DRY WGT	WATER	ĸ		15.69500			100.00	.002		89/01/18
39390	ENDRIN		TOT UG/L		K		.4487100			1.000	.003	74/01/07	
39393	ENDRIN	SEDUG/KG			ĸ		22.63900			200.00	.003		89/01/18
	TOXAPHEN		TOTUG/L		Ë		.7239100			1.000	.050	75/07/01	
	TOXAPHEN	SEDUG/KG			Ë		286.8000			3000.00	.05		89/01/18
	HEPTCHLR		TOTUG/L		• •		1.025000			2,000	.050		77/07/12
					K		.4729600			1.000	.002		89/01/18
					TOT		.5189600			2.000	.002		89/01/18
39413	HEPTCHLR	SEDUG/KG	DRY WGT	WATER	K		15.69500			100.00	.003		89/01/18
	HPCHLREP		TOTUG/L		Ř	24		.2275600		1.000	.002		89/01/18
	HPCHLREP	SEDUG/KG			ĸ		15.69500			100.00	.002		89/01/18
	MTHXYCLR		UG/L	WATER	Ŷ	21		.2013100		1.000	.010	74/01/07	
	MTHXYCLR		UG/KG	WATER	K K		60.73400			500.00	.010		89/01/18
	PCB-1221	mad bk!	TOTUG/L		k		.6561500			1.000	.030		89/01/18
	PCB-1221	SEDUG/KG			ĸ		416.0000			3000.00	.030	82/06/02	
	PCB-1232	ocboo, ka	TOTUG/L		ĸ	21		.1219700		1.000	. 030	77/01/25	
	PCB-1232	SEDUG/KG			ĸ	18		487200.0		3000.00	.030	78/11/07	
	PCB-1242	JEDUG! NG	TOTUG/L		ĸ		.7871400			1.000	.030		89/01/18
	PCB-1242	SEDIIG/KG			ĥ	18		487200.0		3000.00			
	PCB-1248	SEDUG/ KG	TOTUG/L		ĥ	10		.1544900		1.000	.030		89/01/18
33300	- 20-1740		101dd/L	MAIEK		13	. 4261200	. 1344500	. 3530000	1.000	. 030	01/11/10	89/01/18

PGM=INVENT

PAGE:

88

/TYPA/AMBNT/STREAM

BCC02
33 45 35.0 118 02 30.0 3
AT BOLSA AVENUE EXTENSION BRIDGE
06059 CALIFORNIA ORANGE
SANTA ANA RIVER BASIN 140700
BOLSA CHICA CHANNEL D/S C02/C03
21CAOCFC 18070201
0000 FEET DEPTH

	PARAM	METER		MEDIUM	RMK	NUMBER			STAN DEV		MINIMUM		END DATE
39503	PCB-1248 S		DRY WGT	WATER	K		416.0000	840090.0	916.5700	3000.00	. 03	82/06/02	
	PCB-1254		TOTUG/L	WATER			7.000000			7.000	7.000		79/10/09
					K		.7765000			1.000	.030		89/01/18
					TOT		1.072900			7.000	.030		89/01/18
39507	PCB-1254 9	SEDUG/KG	DRY WGT	WATER	K		236.9700	487200.0	698.0000	3000.00	.03	78/11/07	
39508	PCB-1260		TOTUG/L	WATER		-	1.000000			1.000	1.000		77/01/25
					K		.7765000			1.000	.030		89/01/18
					TOT		.7871400			1.000	.030		89/01/18
	PCB-1260 S		DRY WGT		K		236.9700			3000.00	. 03		89/01/18
	PCB-1016 9		DRY WGT		K		460.0000	923320.0	960.9000	3000.00	.03		89/01/18
39530	MALATHN V	WHL SMPL	UG/L	WATER			.7000000			. 700	.700		77/01/25
					K		1.471300			10.000	.020		89/01/18
					TOT		1.423100			10.000	.020		89/01/18 89/01/18
	MALATHN	MUD	UG/KG	WATER	K		172.5000			1000.00	. 05		89/01/18
		WHL SMPL	UG/L	WATER	Ķ		3.271300			10.000	.020		89/01/18
	PARATHN	MUD	UG/KG	WATER	K		879.6500	/014600	2648.500	1.700	1.700		79/05/09
39730	2,4-D	WHL SMPL	UG/L	WATER			1.700000	20 73600	4 553700	10.000	.010		89/01/18
					K		3.696900 3.554300			10.000	.010		89/01/18
				WATER	TOT		105.4200			500.00	.05		89/01/18
39731	2,4-D	MUD	ug/Kg	WATER	K K		3.208500			10.000	.010		89/01/18
39760		WHL SMPL	UG/L	WATER	k				44.98800	100.00	.01		89/01/18
39761		MUD	UG/KG UG/L	WATER WATER		12	8.500000	2023.900	44.90000	8.500	8.500		74/01/07
39/80	DICOFOL 1	WHL SMPL	uu/L	MAILK	K	, 9		2447700	.4947400	1.000	.005		80/10/14
					тот		1.422800			8.500	.005		80/10/14
20702	I THENAND	WHL SMPL	UG/L	WATER	, 0, K		.4871000			1.000	.002		89/01/18
		MUD DRY	uG/KG	WATER	Ŕ		16.58800			100.00	,002		89/01/18
	CAL HARD	CA MG	MG/L	WATER	\$	*7			109.0400	489	130		86/10/13
	DISS SOL	SUM	MG/L	WATER	•	Ŕ			859.7400	2728	19		86/10/13
		TOT-NO3	MG/L	WATER					15.04400	83.0	. 0	66/07/07	92/02/05
71030	MILKAIE	101-1105	mar E	1101EN	κ				.2173600	9	. 04	73/09/17	84/07/16
					TOT				14.98200	83.0	. 0	66/07/07	92/02/05
71885	IRON	FE	UG/L	WATER	, , ,				300.8300	1270.00	330.00	74/01/07	84/05/14
		HG, TOTAL	űG/L	WATER		6			5.111400	13.5	1.0	73/07/16	82/06/01
71300	mcKOGK i	,,,,,,,,,			K	14			5.175300	20.0	. 2	73/04/06	85/10/14
					TOT				5.220200		. 2	73/04/06	85/10/14
71921	MERCURY	SEDMG/KG	DRY WGT	WATER		7			.5082300		.007	78/11/07	83/05/10
,.,21	croun1				K	7			.1272100		.03	81/05/19	86/10/14
					TOT	14			.3585300		.007	78/11/07	86/10/14
						- -	-						

PGM=INVENT

PAGE:

89

/TYPA/AMBNT/STREAM

BCC02 33 45 35.0 118 02 30.0 3 AT BOLSA AVENUE EXTENSION BRIDGE 06059 CALIFORNIA SANTA ANA RIVER BASIN ORANGE 140700 D/S C02/C03 18070201 BOLSA CHICA CHANNEL 21CAOCFC

0000	FEET	DEPTH
------	------	-------

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MUMIXAM	MINIMUM	BEG DATE	END DATE
74041	WQF	SAMPLE	UPDATED	WATER		72	894040.0	2970E+05	17235.00	920526	860717	79/03/21	
80101	CARBON	DRY WGT	MG/KG	WATER		3	3880.000	1469200	1212.100	4900.0	2540.0	83/11/08	86/10/14
81799	AVG. STRM	FLOW PER	COMP.CFS	WATER		13	30.93500	7228.600	85.02100	308	2	79/06/11	
81886	PERTHANE	SED DRY	WGTUG/KG	WATER	K	10	136.0000	29560.00	171.9300	500.000	.003	81/11/01	89/01/18
82007	% SAND	IN SED	DRY WGT	WATER		5	63.64000	819.4600	28.62600	88.00	15.20	82/06/02	
82008	SEDIMENT	PARTSIZE	SILT	WATER		5	29.32000	834.6100	28.89000	77.60	7.00	82/06/02	
82009	SEDIMENT	PARTSIZE	CLAY	WATER		5	7.040000	10.00800	3.163600	11.00	3.00	82/06/02	
82028	RATIO	FEC COL	FEC STRP	WATER	\$	1	2.162800			2	2	75/10/07	
82302	RADON222	TOT.CT.	ER PC/L	WATER		1	30.00000			30.00	30.00	85/10/15	
82303	RADON222	TOTAL	PC/L	WATER		1	.0000000			.00	.00	85/10/15	

/TYPA/AMBNT/WELL

PGM=INVENT

PAGE:

90

CA0057231005 B90 33 45 44.0 118 05 50.0 2 ALAMITOS BARRIER PROJECT 06037 CALIFORNIA

LOS ANGELES

140692

21CALAFD 0999 FEET DEPTH

18070106

	PAR	AMETER		MEDIUM	RMK	NUMBER	MEAN		STAN DEV		MINIMUM	BEG DATE	
00010	WATER	TEMP	CENT	WATER	\$	9	22.80900	1.309100	1.144200	25.0	21.5	75/05/01	
00011	WATER	TEMP	FAHN	WATER		9	73.05600	4.250500	2.061700	77.0	70.7		85/09/04
00056	FLOW	RATE	GPD	WATER		37	8561.600	39258000	6265.700	26400	500	75/05/01	85/09/16
00310	BOD	5 DAY	MG/L	WATER		7	15.21400	166.1100	12.88800	39.0	6.0	75/05/01	82/03/18
00400	PH	J	Su	WATER		9	6.996700	.2001700	.4474000	7.50	6.10	75/05/01	85/09/04
	RESIDUE	SETTLBLE	ML/L	WATER		9	.0777780	.0019445	.0440960	. 2	0	75/05/02	82/03/15
30040	WEGTDOE	00.,000			K	46	.0521740	.0001063	.0103120	. 1	. 05	75/05/01	85/09/16
					TOT	55	.0563630	.0004680	.0216350	. 2	0	75/05/01	85/09/16
00745	SULFIDE	TOTAL	MG/L	WATER	K	8	.2000000	.0000000	.0000000	. 20	. 20	75/05/01	85/09/04
72005	SAMPLE	SOURCE	CODE	WATER		11	1.000000	.0000000	.0000000	1	1	76/11/03	85/09/04
85001	BOD	5 DAY	#/DAY	WATER		7			1.378900	4	. 5	75/05/01	82/03/18

/TYPA/AMBNT/WELL

PGM=INVENT

B30 CA0002364004

33 45 44.0 118 05 50.0 2

ALAMITOS BARRIER PROJECT 06037 CALIFORNIA

LOS ANGELES

140692

21CALAFD

18070106

0999 FEET DEPTH

	PARA	METER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
00010	WATER	TEMP	CENT	WATER	*	40	22.29000	.1080700	.3287500	23.0	21.7	75/02/13 78/08/23
00011	WATER	TEMP	FAHN	WATER		40	72.12300	.3493600	.5910700	73.4	71.0	75/02/13 78/08/23
00056	FLOW	RATE	GPD	WATER		40	288460.0	4848E+06	69631.00	387816	129550	75/02/13 78/08/23
00310	BOD	5 DAY	MG/L	WATER		19	.6710500	.8014800	.8952500	3.0	.0	75/02/13 78/07/13
00400	PH		su	WATER		40	7.018200	.0629630	.2509300	7.50	6.60	75/02/13 78/08/23
	RESIDUE	SETTLBLE	ML/L	WATER	K	40	.0500000	.0000000	.0000000	. 05	. 05	75/02/13 78/08/23
	SULFIDE	TOTAL	MG/L	WATER	K	16	.2000000	.0000000	.0000000	. 20	. 20	75/02/13 78/07/13
72005	SAMPLE	SOURCE	CODE	WATER		41	1.000000	.0000000	.0000000	1	1	75/02/13 78/08/23
85001	BOD	5 DAY	#/DAY	WATER		19	1.327900	2.886000	1.698800	6	0	75/02/13 78/07/13

PAGE: 91

/TYPA/AMBNT/WELL

PGM=INVENT

B320B CA0057231010

33 45 59.0 118 05 29.0 2 ALAMITOS BARRIER PROJECT

06037 CALIFORNIA

LOS ANGELES CALIFORNIA 140600

LOS ANGELES RIVER

21CALAFD 840225 HQ 18070106

0000 FEET DEPTH

	PAR	AMETER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
00010	WATER	TEMP	CENT	WATER	\$	4	13.19500	1.929000	1.388900	15.0	11.7	85/02/27 86/04/03
00011	WATER	TEMP	FAHN	WATER		4	55.75000	6.250000	2.500000	59.0	53.0	85/02/27 86/04/03
00056	FLOW	RATE	GPD	WATER		15	25486.00	4100E+05	20251.00	55060	210	85/02/27 86/04/11
00400	PH		SU	WATER		4	7.600000	.0267490	.1635500	7.80	7.40	85/02/27 86/04/03
00545	RESIDUE	SETTLBLE	ML/L	WATER	K	36	.0500000	.0000000	.0000000	. 05	. 05	85/02/27 86/04/11
	SULFIDE	TOTAL	MG/L	WATER	K	1	.2000000			. 20	. 20	86/04/03 86/04/03
72005	SAMPLE	SOURCE	CODE	WATER		4	1.000000	.0000000	.0000000	1	1	85/02/27 86/04/03

PAGE: 92

PGM=INVENT

PAGE:

93

B20 CA0002364003 33 46 00.0 118 05 50.0 2

ALAMITOS BARRIER PROJECT 06037 CALIFORNIA

LOS ANGELES 140692

/TYPA/AMBNT/WELL

18070105

21CALAFD 0999 FEET DEPTH

	PAR	AMETER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
00010	WATER	TEMP	CENT	WATER	\$	40	21.38600	.4044500	.6359600	22.2	18.2	74/09/07 78/08/23
00011	WATER	TEMP	FAHN	WATER		40	70.49500	1.301300	1.140700	72.0	64.8	74/09/07 78/08/23
00056	FLOW	RATE	GPD	WATER		39	335340.0	7884E+06	88794.00	407207	1751	74/09/07 78/08/23
00310	BOD	5 DAY	MG/L	WATER		20		.9151600		4.0		74/09/07 78/07/13
00400	PH		su	WATER		40	7.131000	.1200200	.3464400	8.60		74/09/07 78/08/23
00530	RESIDUE	TOT NFLT	MG/L	WATER		1	2.000000			2	2	74/09/07 74/09/07
00545	RESIDUE	SETTLBLE	ML/L	WATER		5	.0700000	.0045000	.0670820	. 5	ō	74/09/07 76/12/21
				*****	K	36	.0500000			. 05	. 05	75/08/20 78/08/23
					TOT	41	.0524390			.2		74/09/07 78/08/23
00745	SULFIDE	TOTAL	MG/L	WATER	K	16	.2000000				. 20	75/06/13 78/07/13
72005	SAMPLE	SOURCE	CODE	WATER	"	39	1.000000					75/06/13 78/08/23
85001	BOD	5 DAY	#/DAY	WATER				5.592500			'n	74/09/07 78/07/13
85002			#/DAY	WATER			4.600000	0.032300	2.004900	5	Š	74/09/07 74/09/07
03002	COOPINED	COLIDS	# , DA !	MOICK		•	4.000000			3	. 5	/4/03/0/ /4/03/0/

PGM=INVENT

B80 CA0057231004

33 46 00.0 118 05 50.0 2 ALAMITOS BARRIER PROJECT 06037 CALIFORNIA

LOS ANGELES 140692

/TYPA/AMBNT/WELL

21CALAFD 0999 FEET DEPTH

18070105

	PAR	AMETER		MEDIUM	RMK	NUMBER	MEAN	VARIANCE	STAN DEV	MAXIMUM	MINIMUM	BEG DATE END DATE
00010	WATER	TEMP	CENT	WATER	\$	9	21.24100	2.272000	1.507300	24.0	19.0	75/05/30 85/09/25
00011	WATER	TEMP	FAHN	WATER		9	70.23300	7.368700	2.714500	75.2	66.2	75/05/30 85/09/25
00056	FLOW	RATE	GPD	WATER		3 5	14417.00	1210E+05	11002.00	37650	940	75/05/23 85/10/01
00310	BOD	5 DAY	MG/L	WATER		7	10.85700	227.8100	15.09300	43.0	1.0	75/05/30 82/03/25
00400	PH		su	WATER		9	7.404400	.0431820	.2078000	7.70	7.20	75/05/30 85/09/25
00545	RESIDUE	SETTLBLE	ML/L	WATER		18	.1022200	.0022301	.0472240	. 2	.01	76/12/08 82/03/30
					K	35	.0557140	.0002605	.0161420	. 1	. 05	75/05/23 85/10/01
					TOT	53	.0715090	.0013939	.0373350	. 2	.01	75/05/23 85/10/01
00745	SULFIDE	TOTAL	MG/L	WATER	K	8	.2000000	.0000000	.0000000	. 20	. 20	75/05/30 85/09/25
72005	SAMPLE	SOURCE	CODE	WATER		9	1.000000	.0000000	.0000000	1	1	76/12/21 85/10/01
85001	BOD	5 DAY	#/DAY	WATER		7	2.711300	15.71100	3.963700	11	. 2	75/05/30 82/03/25

PAGE:

94

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IX 75 Hawthorne Street San Francisco, CA 94105

APR 0 8 1993

Mr. Don Kingery CH2M HILL 1111 Broadway, Suite 1200 Oakland, CA 94607-4046

Dear Mr. Kingery:

Enclosed is the water quality data you requested from the STORET water quality data system. This retrieval summarizes the data by analytical constituent and monitoring site for the period of record.

If you have any questions or need more data, please contact me at (415) 744-1964.

Sincerely,

Eric Wilson

Computer Systems Analyst

Enclosures

TECHNICAL MEMORANDUM Page 16 May 17, 1993 SCO70020.MN

References

Orange County Environmental Management Agency (OCEMA), Hydrologic Data Report, 1990-1991 Season, Volume XXVII, Environmental Resources Division, Santa Ana, CA

Soil Conservation Service (SCS) and Forest Service, Soil Survey of Orange County and Western Part of Riverside County, California, United States Department of Agriculture

Attachment A

Anaheim Bay Watershed Data Sources

Land Use

Land use maps -

City of Fountain Valley

Land Use Plan, Buena Park General Plan, Adopted by Resolution 7315 on March 15, 1982, Amended March 22, 1991 by Resolution 9268. From OCEMA/Flood Program Division

Department of Water Resources (DWR) land use maps corresponding to USGS topo maps for Seal Beach, Newport Beach, Anaheim, and Los Alamitos.

Topography

USGS 7-1/2' Topographic Maps -

Los Alamitos Quadrangle, 1965, photorevised in 1981

Anaheim Quadrangle, 1965, photorevised in 1981

Seal Beach Quadrangle, 1965, photorevised in 1981

Newport Beach Quadrangle, 1965, photorevised in 1981

Soils

Soil Survey of Orange County and Western Part of Riverside County, CA, United States Department of Agriculture, Soil Conservation Service and Forest Service

Watershed Hydrology

Hydrology Reports - (From Orange County Environmental Management Agency (OCEMA) Public Works)

Los Alamitos Channel Facility No. C01 and Los Alamitos Retarding Basin Facility No. C01B01. Prepared by Orange County Flood Control District. Includes description of drainage area, channels, 25- and 100-year discharge curves, Drainage Area Map, and Land Use and Soil Group Map.

Hydrology Report No. C02-4. Bolsa Chica Channel, Facility No. C02. San Diego Freeway to Cerritos Avenue.

Hydrology Report No. C00P02-2. Seal Beach Storm Drain, Facility No. C00P02

Hydrology Report No. C00PS1-2. Seal Beach Pump Station, Facility No. C00PS1

Hydrology Report No. C02-2. Bolsa Chica Channel, Facility No. C02, From Edinger Avenue to Huntley Avenue.

Hydrology Report No. C03-4. Anaheim-Barber City Channel, Facility No. C03, entire drainage system.

Hydrology Study, Westminster Channel, Facility No. C04, entire drainage area.

Hydrology Report for East Garden Grove-Wintersburg Channel (Facility No. C05), Bolsa Chica Bay to Vermont Avenue, Volume I, July 1990.

Hydrology Report No. C06-2, Ocean View Channel, Facility No. C06, entire drainage system, November 1989.

Hydrology Report No. C07-1, Sunset Channel, Facility No. C07, entire drainage system.

Draft EIS/EIR for the Proposed Bolsa Chica Project - Describes drainage and watershed for Bolsa Chica

Excepts from the 1990-1991 Hydrologic Data Report, OCEMA - Discharge summaries for 11 stream gaging stations, seasonal streamflow data for Westminster Channel station (No. 207), East Garden Grove-Wintersburg Channel (No. 217), Bolsa Chica Channel at Westminster (No. 225), and Anaheim-Barber City Channel (No. 232).

Stormwater Pollution Prevention Plan, Naval Weapons Station, Seal Beach, CA, October 1992.

Contaminant Source Evaluation

Environmental Protection Agency Storet System. Data retrieved from a query of the Storet System database for water quality samples within the Anaheim Bay Watershed. Contact: Eric Wilson, (415)744-1964.

Appendix B

EVALUATION OF SEDIMENT TRANSPORT IN THE SEAL BEACH NATIONAL WILDLIFE REFUGE

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Appendix B

EVALUATION OF SEDIMENT TRANSPORT IN THE

SEAL BEACH NATIONAL WILDLIFE REFUGE

Prepared by Don Kingery and Steve Costa

INTRODUCTION

Purpose

The evaluation of sediment transport in the Seal Beach National Wildlife Refuge (NWR) is a

part of the National Wildlife Refuge Study to assess the impacts of the operations at Naval

Weapons Station (NWS) Seal Beach on the NWR. The study assesses the impacts of

operations of the NWS on biota of the NWR.

The primary objective of the sediment transport evaluation is to determine the contaminant

transport potential within the tidal saltmarsh that comprises the NWR to provide a

framework for evaluation of data obtained from sediment and biological sampling efforts.

An evaluation of the transport mechanisms is important for assessing the potential sources,

sinks, and transport paths of contaminants throughout the NWR. The results of the

oceanographic studies provide a basis for more detailed and comprehensive investigations

SCO100217E0.WP5\95

B-1

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

that may be required if additional sampling or feasibility studies (FSs) of potential corrective

actions become necessary.

The oceanographic studies consist of physical oceanographic data collection, numerical

modeling of the flow patterns and evaluation of contaminant transport mechanisms

(including sediment transport potential) in the NWR.

Background

NWS Seal Beach occupies 5,000 acres adjacent to Anaheim Bay, approximately 26 miles

south of the Los Angeles urban center. The 911-acre NWR, located within the NWS

boundaries, is composed almost entirely of the remaining natural coastal saltmarsh of the

once larger Anaheim Bay system. An Initial Assessment Study (IAS) conducted in 1985 and

subsequent studies have identified potential past hazardous waste disposal sites and

contaminated areas on the NWS that could pose a threat to the biota at the NWR. The

presence of several special-status species and their dependence on the tidal saltmarsh of

the NWR make the identification of contaminant levels at the NWR important.

Figure 1 shows the extent of the present tidal saltmarsh system in the NWR. Only a small

portion of the tidal saltmarsh system occurs outside of the NWR boundaries, thus "NWR"

and tidal saltmarsh" are used interchangeably to refer to this system. The Port of Long

Beach (POLB) Ponds shown in Figure 1 are wetlands created by the POLB as mitigation for

B-2

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

the construction of a landfill in Long Beach Harbor. Construction began in 1989 and was

completed in March and April 1990. These wetlands were constructed from areas of

uplands and former wetlands, most of which had become isolated from tidal influences by

roads or other barriers. The new wetlands consist of tidal basins with tidal channel

connections and are part of the existing system.

Approach

0

0

0

The approach to evaluate the potential for sediment movement (and therefore, contaminant

transport) throughout the NWR includes:

Evaluation of the physical processes of potential importance for contaminant

transport in the tidal saltmarsh

o Collection of physical oceanographic data through existing sources, as well as

through field data collection, to define the physical characteristics of the tidal

saltmarsh

Computer modeling of the hydrodynamics of the tidal saltmarsh system

Assessment of the sediment transport potential within the tidal saltmarsh based on

the results of the computer model

B-5

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

The tasks listed above are sequential, with the results from one required for those that

follow. The physical data collected were used as a basis for the development and

calibration of the computer models of the tidal saltmarsh. The models were run for a

number of tidal conditions in order determine the magnitudes of currents through the tidal

channels. Similarly, the resulting current values were used to evaluate the potential for

contaminant transport throughout the tidal saltmarsh.

PHYSICAL PROCESSES

Transport paths of contaminants entering the tidal saltmarsh are advection and diffusion for

contaminants in the water column and sediment transport for contaminants bound to

sediments. Both depend on water currents and circulation patterns. The levels and

distribution of contaminants in the water column depend, in large part, on the rate of

exchange of water between the tidal saltmarsh and Anaheim Bay. The flushing rates and

residence times of each arm of the tidal saltmarsh are indicators of the potential to transport

water-borne contaminants into and out of the tidal saltmarsh. The flushing rate is the rate at

which water is removed from the area as a result of tidal exchange with the ocean or flows

from runoff from the areas surrounding the tidal saltmarsh. The residence time is the time

required to completely flush a volume of water (or a water-bourne contaminant) from the

tidal saltmarsh and is a function of the flushing rate and the volume of the tidal saltmarsh.

B-6

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

For sediment bound contaminants, the current velocities in the tidal saltmarsh will determine

the tendency of the sediments to erode or acrete.

The physical forces of potential importance for driving the currents in a basin or tidal

saltmarsh are wind, waves, tides, and fresh water flows. Of these, tides are expected to be

the most significant for the system in the NWR. The Anaheim Bay system is isolated from

the effects of ocean waves, thus, they will not influence the currents in the tidal saltmarsh.

The influence of wind also is not expected to be significant compared to tidal influences.

The tidal saltmarsh largely consists of narrow meandering channels with relatively little

surface area on which the wind may act. The circulation models employed in this study

predict the response of the tidal saltmarsh to tidal influences.

DATA COLLECTION

Physical oceanographic data are required to describe the physical environment of the tidal

saltmarsh in order to understand the sources, transport, and distribution of contaminants in

the NWR. Data collected include water surface elevations (tidal data), bathymetry and

dimensions of tidal saltmarsh channels, and salinity and velocity profiles at selected

locations in the NWR. These data were used to evaluate the processes important to the

transport of contaminants through the tidal saltmarsh and to develop and calibrate the

B-7

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

numerical model used to predict water velocities and sediment transport potential in the

NWR.

The salinity profiles were used to evaluate the characteristics of the flow in the tidal

saltmarsh in order to determine the type of model required (i.e. the amount of stratification

determines whether a single layer model can be used or whether a two-layer model is

required). The bathymetry and channel dimensions were used to define the geometry of

the model. Observed flow velocities and water surface elevation data were required

primarily for calibration of the model against observed conditions.

Water Level Data

Four Flo-Tote water level gauge stations were installed to monitor tidal propagation in the

NWR. The gauges were deployed from 2 December 1992 through 4 January 1993 and

were set to take readings of the water surface elevation once every 10 minutes for a

30-second sampling interval. Gauges 2, 3, and 4 are shown in Figure 1. Gauge 1 was

installed on a Navy Pier in Anaheim Bay, west of the Pacific Coast Highway to monitor the

tidal elevations in Anaheim Bay (not shown in Figure 1). In addition, tide data at Newport

Beach (Newport), approximately 10 miles from Anaheim Bay, were also obtained from

National Oceanic and Atmospheric Administration (NOAA) for the month of December 1992.

B-8

A check of the gauges approximately 4 or 5 days into the recording period showed that the tide gauge installed on the Navy Pier in Anaheim Bay had stopped recording. The gauge

was reprogrammed and redeployed and appeared to be operating properly for the

remainder of the recording period. However, subsequent analysis of the data from this

gauge indicated that data were not recorded accurately. The recorded mean water level

drifted with time and recorded amplitudes appeared erratic and significantly lower than

those from the other gauges. The data from this gauge, therefore, were discarded and tide

data from the Newport gauge were used to characterize ocean tides in their place.

The observed amplitude and phase of the water surface fluctuations in each of the arms of

the tidal saltmarsh relative to those at the tidal saltmarsh mouth (based on the Newport

gauge data) were used in the model calibration, as described below. The data from the

three gauges installed in the NWR were analyzed and compared with the water level data

for Newport. Table 1 summarizes the mean tide ranges for each of the four data sets, as

well as the average time lag between the high and low waters at Newport and those in the

tidal saltmarsh. The Mean High Water (MHW) and the Mean Low Water (MLW) are

averages of the maximum and minimum water surface elevations, respectively, for each tidal

cycle in the data set relative to the mean sea level (msl) for the data set. The time lag or

phase lag refers to the average difference in time between the high and low tides at the

Newport station and the corresponding high and low tides at the tide gauges in the tidal

saltmarsh. Attenuation is the reduction of the tidal amplitude between the Newport station

and the tide gauges in the tidal saltmarsh. The time lag and attenuation are both functions

B-9

of resistance to flow as a result of friction between the water and the channel bottom, as well as the geometry of the tidal saltmarsh. The data show little attenuation of tidal fluctuations for the middle and eastern arms of the tidal saltmarsh with slightly higher (approximately 10 percent) attenuation of the tidal range for the western arm. Similarly, the data show a slight phase lag for the middle and eastern arms compared with the Newport water levels with a slightly higher lag for the western arm.

Table 1 Seal Beach Tidal Range Summaries ^a										
Gauge	MHW ^b (ft msl)	MLW ^b (ft msl)	Mean Range (ft)	Time Lag from Newport (minutes) ^C	Attenuation ^d					
Newport	1.98	-1.65	3.63							
Gauge 2	2.12	-1.16	3.28	+11.5	0.35 ft (9.6 percent)					
Gauge 3	2.33	-1.19	3.52	+7.5	0.11 ft (3.0 percent)					
Gauge 4	2,24	-1.33	3.57	+7.5	0.06 ft (1.7 percent)					

Footnotes:

- Based on hourly tide data.
- b Mean water levels are for the period from 12/3/93 through 12/31/93.
- Average time lags based on hourly reported water levels from the Newport Beach gauge and half hourly levels from the NWR gauges.
- d Attenuation based on reduction from Newport range.

Bathymetry and Water Column data

The bathymetric and water column data collection required three site visits: a 1-day reconnaissance visit on 13 October 1992, a site visit from 30 October through 3 November

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

1992 for field data collection, and a third visit on 13 November 1992 to take flow

measurements that could not be obtained during the second visit.

Bathymetry

Depths were measured along selected transects in the NWR. Continuous traces of the

depths along each transect were recorded using a King Marine Model 1350 fathometer.

Additionally, a marked pole was used as a backup to the fathometer and to take spot

readings in areas that were too shallow for the fathometer to operate or in locations where

eel grass interfered with the ability of the fathometer to read the bottom.

The accuracy of the fathometer was checked prior to data collection using the calibrated

pole with a metal disk attached to the end as a target. The fathometer sensor was mounted

off the side of an inflatable boat with the sensor head approximately 4 inches below the

surface of the water.

Attachment 1 includes all bathymetric field data collected, including fathometer traces and

field notes. The field notes supplement the fathometer traces and include spot

measurements and water column temperature and salinity measurements.

Figures 2 through 4 show locations of transects and spot readings for the collected data.

The bathymetric data used for the development of the numerical models are summarized in

B-11

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

Table 2. The table includes measured depths, depths adjusted to Mean Lower Low Water

(MLLW), and estimates of other channel dimensions. (MLLW is a tidal datum commonly

used from which to measure water surface elevations.) There are two tidal cycles during a

tidal day. The lower of the two low water levels during a tidal day is called the Lower Low

Water (LLW) and the higher is called the Higher Low Water (HLW). MLLW is the average of

all Lower Low Water Levels.

Water Column Profile

Temperature, salinity, and current velocity were measured throughout the water column at

selected locations. Temperature and salinity measurements were taken on 1 November

1992, along with the bathymetry data. The data were collected using a YSI CT meter.

Readings at each location were taken near the surface and just off the bottom. Field data.

including the recorded values and the locations of the readings, are included with the

bathymetric data in the field notes in Attachment 1. Table 3 presents the measured

temperature and salinity data, along with the corresponding density of the water.

Current measurements were taken on 13 November 1992 using a Price AA current meter.

Readings were taken at locations near the mouths of each of the three arms of the tidal

saltmarsh. Measurements at each location were taken at depths approximately 1-foot

below the surface, 1-foot above the bottom, and at mid-depth. A summary of the current

data is presented in Table 4.

B-12

	Summary of Bathymetric Data.											
Transect No.	Estimated Arm Width (m) (a)	Estimated Channel Width (m) (b)	Est. Depth Outside Channel (c)	Max. Channel Depth (c)	Depth Outside Channel (MLLW) (d)	Channel Depth (MLLW) (d)						
1	24	12	1.0	2.4	0.00	1.38						
2	24	14	0.9	2.5	0.00	1.45						
3	18	0	0.2	0.2	0.00	0.00						
3a	15	0	0.6	0.6	0.00	0.00						
3b	17	0	0.9	0.9	0.00	0.00						
3c	24	0	1.1	1.1	0.04	0.04						
4	17	6	0.6	1.2	0.00	0.18						
5	17	6	0.6	1.2	0.00	0.12						
6	24	12	0.6	2.5	0.00	1.49						
7	38	23	0.6	2.5	0.00	1.47						
8	34	13	1.1	3.8	0.05	2.67						
9	34	15	1.1	3.8	0.00	2.73						
9a	29	0	1.2	1.4	0.11	0.26						
9b	29	0	1.5	1.5	0.41	0.41						
9c	18	0	0.9	1.1	0.00	0.00						
9d	38	0	1.2	1.2	0.10	0.10						
10	76	27	2.2	3.8	1.10	2.63						
11	23	12	1.4	2.0	0.19	0.80						
12	34	26	0.9	1.1	0.00	0.00						
13	61	27	0.6	2.5	0.00	1.32						
14	52	24	1.2	3.1	0.00	1.92						
15	76	43	1.4	2.5	0.13	1.30						
16	94	41	1.1	2.7	0.00	1.44						
16a	94	37	1.2	3.0	0.00	1.73						
17	85	85	1.1	2.3	0.00	1.04						
18	137	46	1.2	5.6	0.00	431						
19	81	18	1.2	5.0	0.00	3.67						
20	85	15	1.8	2.5	0.52	1.23						
21	258	26	0.6	2.5	0.00	1.25						
22	58	58	1.0	1.1	0.00	0.00						
23	114	114	1.0	1.1	0.00	0.00						
24	274	274	1.2	1.8	0.00	0.51						
25	34	15	0.9	3.5	0.00	2.23						
26a	23	23	2.4	2.5	1.24	1.34						
26b	20	20	2.1	2.2	0.94	1.04						
27	34	30	1.2	2.1	0.04	0.91						
28a	14	14	1.4	1.4	0.23	0.23						
28b	9	9	1.5	2.0	0.39	0.84						
29a	34	17	0.9	2.5	0.00	1.43						
	parial photos of the N											

Table 2

⁽a) Based on aerial photos of the NWR.

⁽b) Based on field observations.

⁽c) Based on fathometer trace where possible. Spot readings were taken in areas too shallow for operation of the Fathometer or areas in which eel grass interfered with the trace. Fathometer readings include a 4-inch correction to account for the depth of the sensor.

⁽d) Adjusted to MLLW based on estimated tide during the time the data were collected.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

	Table 3 Seal Beach NWR Temperature and Salinty Data, 11/1/92 Page 1 of 2						
Station	Time (PST)				Density (gm/cm ³)		
1	8:20	S	19.0	28.5	1.020		
		В	19.0	28.5	1.020		
2	8:30	S	19.5	32	1.023		
		В	19.5	32	1.023		
3	8:57	M (8" deep)	18	32	1.023		
4	9:12	S	18.5	32.5	1.023		
		В	18.5	32.5	1.023		
5	9:22	S	19.5	32	1.023		
		В	19.5	32	1.023		
6	9:34	S	19.5	32.25	1.023		
		В	19.5	32.25	1.023		
7	9:45	S	19.5	32.25	1.023		
		В	19.5	32.25	1.023		
10	10:30	S	20	31.5	1.022		
		В	20	32.25	1.023		
11	11:05	S	20.25	31,75	1.022		
		В	20.75	31,75	1.022		
12	11:15	S	20.5	32	1.022		
		В	20.25	31.75	1.022		
13	11:28	S	20.5	32	1.022		
		В	20	31.75	1,022		
15	11:48	S	20.75	31.25	1.022		
		В	20.5	31	1.022		
18	12:25	S	21,5	30.25	1.021		
		В	21	31	1.022		
20	13:55	s	21	31	1.022		
		В	20.5	31	1.022		
23	14:35	S	21,25	30.75	1.020		
		В	20.5	31.5	1.022		
25	15:00	s	21	31.75	1.022		
	10.00						

Table 3 Seal Beach NWR Temperature and Salinty Data, 11/1/92 Page 2 of 2						
Station	Time (PST)	Depth ⁽¹⁾	Temperature (^O C)	Salinity	Density (gm/cm ³)	
		В	20.75	31.5	1.022	
27	15:20	S	21	32	1.022	
		В	20.5	32	1.022	
28	15:35	S	21	32	1.022	
		В	21	32	1.022	
(1) S = Sur	face,	M = Mid-dep	oth, B = Bot	tom		

Revision: 0

Version: Final Revision: 0

Table 4					
Seal Beach NWR Current Velocity Data, 11/13/92					
Price AA Current Meter					

Location	Channel Depth (ft)	Depth of Reading	Speed (fps)	Time	Tidal Elevation & Phase		
1	4	S	1.29	15:30	1.0 ft		
(Mouth of West		M	1.33		(ebb)		
Arm)		В	1.09				
2	7	S	1.29	15:55	0.3 ft (ebb)		
(Mouth of Middle		М	1.22				
Arm)		В	0.95				
3	8	S	1.11	16:10	0.1 ft		
(Mouth of East		М	1.36		(ebb)		
Arm)		В	1.11				

Footnotes:

S = Reading taken approximately 1 foot below surface

M = Reading taken at mid-depth

B = Reading taken approximately 1 foot off bottom

Tides during day of measurements:

Tide Time Height (PST) (ft)

High Water 9:58 $\overline{6.1}$ Tidal Range = 6.5 feet Low Water 17:34 -0.4

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

CIRCULATION MODELING

Circulation Model Description

Formulation of the circulation model required several basic assumptions. The assumptions

made for the NWR tidal saltmarsh system are:

o 1 Dimensional (1-D) Flow: The 1-D case assumes that the important variations in

hydrodynamic and hydrographic parameters are along the alignment of the channel.

Flow rates are taken as depth and cross-channel average values. No variation of

the velocity with the vertical and cross-channel directions are accounted for in this

type of model.

o Unstratified Flow: This assumption is reinforced by the temperature and salinity

measurements taken during the field data collection efforts. The data show no

difference between near-surface and near-bottom values of temperature and salinity

for dry-weather periods.

o Bulk Formulation of Bottom Friction: Bottom friction is expressed as a nonlinear

function of current speed with a constant friction coefficient. This assumption is not

restrictive if model calibration is used to adjust the coefficient for the system under

consideration.

B-27

SCO100217E0.WP5\95

These assumptions are implicit in the computer model "BCTCB," a model developed by CH2M HILL based on a finite difference numerical scheme presented by Koutitas (1988). BCTCB is a 1-D model (flow in the direction of the channel axis only) modified to model flow in tributary branches, as well as flow through the main channel of the tidal saltmarsh. The model solves depth averaged continuity and momentum equations to calculate the response of the channels to given water level (tidal) variations at their boundary. Output of water surface elevations and average current velocities at selected locations in the tidal saltmarsh provides the basis for sediment transport evaluation.

The depth averaged equations used to describe the system are:

$$\frac{\delta h}{\delta t} + \frac{\delta (UH)}{\delta x} = q$$
 Eqn (1)

for continuity and:

$$\frac{\delta U}{\delta t} + U \frac{\delta U}{\delta x} = -g \frac{\delta h}{\delta x} - \frac{\tau}{\sigma H}$$
 Eqn (2)

for momentum, where:

h = water surface elevation above still water datum

U = depth averaged, x-directed velocity

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

t = time

H = water depth below still water datum

q = introduced flow

x = distance along longitudinal axis

g = acceleration due to gravity

 $\tau =$ boundary shear stress (friction)

 $\sigma = density$

The boundary stress term is evaluated as:

$$\frac{\tau}{\sigma} = C_r U |U|$$
 Eqn (3)

where C_f is the friction coefficient.

The governing equations were approximated using an explicit finite difference scheme as described by Koutitas (1988), in which a forward difference is used for time derivatives and center differences are used for spatial derivatives.

This model was originally implemented to predict changes in the salinity structure of a creek that flows into San Francisco Bay (CH2M HILL, 1989). The program was modified by removing calculations of salinity and adding the ability to print elevation and current velocity results to ASCII files for plotting. The program listing is included as Attachment 2.

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Model Definition

The model described above is capable of modeling a single 1-D main channel with a series

of 1-D channels feeding into the main channel. As seen in Figure 1, the NWR tidal

saltmarsh system contains three separate channels that come off of Anaheim Bay. As a

result, three separate models were developed representing existing conditions (including

POLB mitigation ponds) in each of the three main arms of the tidal saltmarsh. Two

additional models were also run representing pre-POLB pond conditions for the east and

west arms to assess possible changes associated with the addition of the ponds.

The channels are divided into cells, each with constant longitudinal dimensions. The cross-

sectional area and channel width at the water surface are defined for each cell at MLLW

and at Mean Higher High Water (MHHW). The model linearly interpolates to calculate these

geometric parameters for water levels between MLLW and MHHW. Each model is defined

based on data obtained from the oceanographic field data collection, as well as existing

topographical maps and aerial photographs.

Figures 5 through 7 show the computational grids used to model the present configurations

of the three arms of the NWR. A longitudinal cell length of 50 meters (m) was initially used

for all models. Subsequently, the cell length for the west and east arm models were

changed to 100 m in order to reduce computational time for these models. This change in

cell size did not reduce accuracy of results. The model of the pre-POLB pond configuration

B-30

SCO100217E0.WP5\95

of the west arm consists of the cells below the first culvert (cell 16 in Figure 5). Figure 8

shows the grid used to model the pre-POLB pond configuration of the east arm. The

geometry of the channels for this configuration was determined from aerial photographs

taken before the POLB ponds were constructed.

Calibration and Sensitivity

Calibration of the models was required to account for site-specific characteristics of the tidal

saltmarsh. Calibration of this sort is primarily accomplished by adjusting the friction

coefficient, C_{f} , defined in Eqn (3) above, until the hydraulic response of the tidal saltmarsh

matches the observed response. The models representing the present conditions in the

tidal saltmarsh were calibrated against observed currents from field measurements taken on

13 November 1992 and against water level data from the tidal data collected during

December 1992. For each of the models, C_f was varied from 0.0025 to 0.05. The sensitivity

of the models to changes in Cf is reflected in the results of the calibration model runs

presented in Tables 5 and 6.

Tables 5 and 6 compare the results of these model runs with observed data. Table 5

presents observed velocities at the mouths of each arm, along with model results for

various values of $C_{\mathbf{f}}$. The bottom, mid-depth, and surface current measurements are

presented, along with an average of the three measurements. Average velocities for the

B-31

SCO100217E0.WP5\95

Revision: 0

model cells at the locations of the current measurements or the cells surrounding the

current measurement locations are shown for comparison with observed conditions.

The reduction or attenuation of the magnitude of the water surface changes between the

mouth and the tide gauge location was used as a measure of the response of the tidal

saltmarsh to tidal forcing. Tides were approximated in the model using sine curves. The

tides are defined by specifying the amplitude (the vertical elevation difference between high

tide and the following low tide), and the period (the time between two adjacent high tides).

Because higher amplitude tides result in higher velocities and, therefore, higher resistance

to flow, the attenuation for higher amplitude tides is greater than small amplitude tides.

Three ranges of tides were modeled: a 1.5-foot amplitude, 9-hour tide for comparison with

observed tides in the 1- to 2-foot range; a 3.6-foot amplitude, 12.4-hour tide for comparison

with 3 to 4 foot observed tides; and a 6-foot amplitude, 14-hour tide for comparison with

observed tides in the 5- to 7-foot range. Table 6 compares the modeled versus observed

response of the water surface elevation at the locations of the tide gauges to various tidal

conditions at the mouth of the tidal saltmarsh.

The potential for sediment movement in the tidal saltmarsh is directly related to the current

velocities. If the current speed does not exceed a threshold value required to mobilize the

sediment, there will be no significant sediment movement. The assessment of the potential

for sediment movement in the tidal saltmarsh focuses on maximum expected velocities in

the tidal saltmarsh. If the maximum expected velocity at a given location exceeds the

B-32

SCQ100217E0.WP5\95

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 5 Model Calibration, Modeled vs. Measured Current Velocities							
	Model	Results ^a	Observed Current ^b (ft/sec)			sec)	
C _f	Cell #	Velocity	В	М	S	Average	
		We	st Arm Mod	lel			
0.05	Cell 1 Cell 3		1.09	1.33	1.29	1.24	
0.025	Cell 1 Cell 3	0.6 1.0					
0.0125	Cell 1 Cell 3	0.8 1.2					
0.00625	Cell 1 Cell 3	0.9 1.4					
0.0025	Cell 1 Cell 3	0.9 1.45					
		Mido	die Arm Mod	del			
0.05	Cell 1	0.89	.95	1.22	1.29	1.15	
0.025	Cell 1	0.95	_				
0.0125	Cell 1	0.99					
0.00625	Cell 1	1.02					
0.0025	Cell 1	1.05					
		Eas	t Arm Mode	el			
0.05	Cell 1		1.11	1.36	1.11	1.19	
0.025	Cell 1	1.20	ļ				
0.0125	Cell 1	1.22					
0.00625	Cell 1	1.27					
0.0025	Cell 1	1.30					

Footnotes:

- a 15.2 hr, 3.25 ft sine wave tide input
- b Current measurements taken 11/13/92.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 6 Model Calibration, Modeled vs. Measured Tidal Attenuation							
	Attenuation (percent)						
	Low Am	olitude ^a	Medium A	mplitude ^b	High Amplitude ^C		
C _f	Observed	Modeled	Observed	Modeled	Observed	Modeled	
			West Arm Mo	del			
0.05	2.1	1.6	2.2	40.5	10.8	56	
0.025		3		26		44	
0.0125		3		12.5		31	
0.00625		3		3.6		17	
0.0025				0			
		M	iddle Arm Mo	odel			
0.05	-3.0	-0.6	-1.4	-0.6	4.5	4.2	
0.025		-0.6		-0.7		1.6	
0.0125		-0.6		-0.6		0.1	
0.00625		-0.8		-0.4		-0.6	
0.0025		-1.5		-0.4		-0.9	
		<u> </u>	ast Arm Mod	lel			
0.05	-6.4	-0.9	-5.5	0.6	2.8	10.1	
0.025		-0.8		-0.7		4.7	
0.0125		7		-1		1.6	
0.00625		-1.3		-1		-0.2	
0.0025				-1		-1.2	

Footnotes:

a Observed tides of 1 to 2 feet. Modeled sinusoidal tide at mouth of 1.5 feet with a 9 hour period.

b Observed tides of 3 to 4 feet. Modeled sinusoidal tide at mouth of 3.6 feet with a 12.4 hour period.

C Observed tides of 5 to 7 feet. Modeled sinusoidal tide at mouth of 6 feet with a 14 hour period.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

threshold for the sediment at that location, sediment movement will be expected. If the threshold is not exceeded at the maximum expected velocity, the potential for sediment movement will be low. Because sediment movement is dependent on maximum velocities, the critical parameters for sediment mobilization are velocities during high tidal range events. Therefore, selection of C_f for the models was made with an attempt to match both the high amplitude tidal attenuation and the observed current velocities.

Based on the results in Tables 5 and 6, the following values of C_f were used for the remainder of the model runs:

West Arm - $C_f = 0.0044$

East Arm - $C_f = 0.019$

For the middle arm model, a friction coefficient on the high end of the range was required to match the observed attenuation while a low coefficient was required to approach the observed velocity. For this model, both high friction and low friction models were run to give bounds for the velocities in the channels.

The friction coefficients shown above for the west and east arm models are used for both the models representing the present conditions, as well as the pre-POLB conditions.

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Model Runs

The models were run for a tidal range at the mouth of the tidal saltmarsh of 8 feet with a

14-hour period, corresponding to the order of extreme events based on a review of the tidal

predictions for Los Angeles, California in the National Ocean Service (NOS) tide tables

(NOS, 1993). These tides were assumed to be sinusoidal and were run for a sufficient

number of cycles so that any transients resulting from start-up of the model would damp

out. The maximum velocities were extracted from the results of each model and are

presented in Tables 7 through 12.

SEDIMENT TRANSPORT EVALUATION

Transport of sediment in the NWR tidal saltmarsh results from shear stresses acting on the

bed material from fluid flow over the bed. As the velocity of flow over the bed increases, a

threshold level is eventually reached. This threshold level is defined as the conditions at

which sediment motion will be initiated.

Various factors, such as sediment and fluid density, size, shape, and profile of the bottom

current, dictate at what point sediment motion will be initiated. Hjulström developed a

simplified sediment threshold criterion to predict erosion, transport, and deposition of

various size sediment grains based on average flow velocities (Graf, 1971). This

B-46

SCO100217E0.WP5\95

Table 7 Maximum Velocities in West Arm						
	Velocit	y (ft/sec)		Velocity (ft/sec)		
Cell No.	ebb	flood	Cell No.	ebb	flood	
	Main Chan	nel		Main Chani	nel	
1	-2.61	1.33	28 (c)	-0.25	0.28	
2	-2.60	1.33	29 (P)	-0.13	0.15	
3	-3.98	1.93	30 (P)	-0.04	0.04	
4	-4.51	2.61	31 (P)	-0.01	0.02	
5	-4.26	2.90	32 (P)	0.00	0.00	
6	-4.16	3.05	Brand	ch at Cell 3		
7	-4.49	3.49	1	-0.79	0.17	
8	-4.47	3.96	2	-0.29	0.14	
9	-4.48	4.77	3	0.00	0.00	
10	-5.27	6.03	Branc	ch at Cell 4		
11	-5.14	6.79	1	-0.69	0.16	
12	-3.87	5.59	2	-0.26	0.08	
13	-4.22	6.18	3	0.00	0.00	
14	-4.84	8.99	Brancl	h at Cell 11		
15	-3.92	8.76	1	-0.42	0.51	
16 (c)	-4.41	11.96	2	-0.34	0.41	
17	-0.79	2.26	3	-0.28	0.36	
18	-0.33	0.42	4	-0.23	0.28	
19 (c)	-0.78	0.84	5	-0.15	0.17	
20	-2.01	2.26	6	-0.10	0.10	
21	-0.91	1.10	7	-0.05	0.05	
22	-0.90	1.04	8	0.00	0.00	
23 (c)	-1.54	1.78	Branch	n at Cell 20		
24	-1.53	1.82	1 (c)	-0.31	0.33	
25 (c)	-1.38	1.66	2 (P)	-0.09	0.10	
26	-1.41	1.76	3 (P)	-0.02	0.02	
27	-0.33	0.41	4 (P)	0.00	0.00	

Footnotes:

(c) = Culvert (P) = POLB Pond

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

	Table 8 Maximum Velocities in Middle Arm - Low Friction Model						
	Velocit	y (ft/sec)		Velocity (ft/sec)			
Cell No.	ebb	flood	Cell No.	ebb	flood		
Main Channel			Main Channel				
1	-1.81	2.02	32	-0.14	0.24		
2	-1.76	1.99	33	0.00	0.00		
3	-2.48	2.83	Bran	ch at Cell 25			
4	-1.90	2.31	1	-0.99	1.96		
5	-1.43	1.79	2	-1.52	3.26		
6	-1.18	1.53	3	-0.69	1.06		
7	-1.04	1.38	4	-0.73	0.84		
8	-1.05	1.42	5	-0.92	1.64		
9	-1.19	1.63	6	-0.92	1.97		
10	-1.28	1.77	7	-0.83	2.10		
11	-1.26	1.73	8 (c)	-1.03	1.44		
12	-1.23	1.75	9 (B)	-0.08	0.17		
13	-1.27	1.82	10 (B)	-0.06	0.18		
14	-1.28	1.79	11 (B)	0.00	0.00		
15	-1.28	1.71	Branch at Cell 26				
16	-1.25	1.65	1	-0.14	0.21		
17	-1.12	1.54	2	-0.09	0.14		
18	-1.19	1.69	3	-0.13	0.22		
19	-1.04	1.65	4	-0.15	0.25		
20	-1.01	1.51	5	-0.17	0.29		
21	-0.95	1.61	6	-0.18	0.32		
22	-1.15	1.99	7	-0.18	0.33		
23	-1.12	1.98	8	-0.22	0.43		
24	-1.14	2.02	9	-0.36	0.55		
25	-1.21	2.19	10	-0.47	0.78		
26	-0.47	0.72	11	-0.41	0.71		
27	-0.24	0.41	12	-0.40	0.86		
28	-0.53	0.78	13	-0.35	0.71		
29	-0.55	1.16	14	-0.22	0.46		
30	-0.336	0.93	15	0.00	0.00		
31	-0.25	0.36					
Footpotos:							

Footnotes:

⁽c) = Culvert

⁽B) = Bolsa Cell

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 9 Maximum Velocities in Middle Arm - High Friction						
Velocity (ft/sec)				Velocity (ft/sec)		
Cell No.	ebb	flood	Cell No.	ebb	flood	
Main Channel				Main Channel		
1	-1.31	1.10	32	-0.04	0.08	
2	-1.26	1.09	33	0.00	0.00	
3	-1.56	1.36	Branc	ch at Cell 25		
4	-1.14	1.10	1	-0.67	1.10	
5	-0.86	0.87	2	-1.07	1.86	
6	-0.72	0.76	3	-0.28	0.51	
7	-0.64	0.70	4	-0.23	0.42	
8	-0.65	0.72	5	-0.51	0.92	
9	-0.73	0.82	6	-0.60	1.10	
10	-0.77	0.88	7	-0.59	1.11	
11	-0.74	0.85	8 (c)	-0.84	1.52	
12	-0.73	0.87	9 (B)	-0.05	0.11	
13	-0.75	0.91	10 (B)	-0.02	0.03	
14	-0.70	0.86	11 (B)	0.00	0.00	
15	-0.62	0.75	Branch at Cell 26			
16	-0.57	0.69	1	-0.08	0.14	
17	-0.59	0.72	2	-0.07	0.11	
18	-0.65	0.86	3	-0.10	0.16	
19	-0.62	0.85	4	-0.11	0.18	
20	-0.55	0.76	5	-0.11	0.20	
21	-0.61	0.86	6	-0.12	0.20	
22	-0.79	1.17	7	-0.11	0.18	
23	-0.75	1.14	8	-0.12	0.21	
24	-0.72	1.11	9	-0.11	0.20	
25	-0.74	1.17	10	-0.10	0.20	
26	-0.20	0.42	11	-0.08	0.15	
27	-0.08	0.20	12	-0.07	0.13	
28	-0.12	0.29	13	-0.07	0.13	
29	-0.12	0.28	14	-0.04	80.0	
30	-0.09	0.19	15	0.00	0.00	
31	-0.06	0.14				
Footnotes:		· · · · · · · · · · · · · · · · · · ·				

⁽B) = Bolsa Cell

⁽c) = Culvert

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 10 Maximum Velocities in East Arm						
	Velocity (ft/sec)			Velocity (ft/sec)		
Cell No.	ebb	flood	Cell No.	ebb	flood	
Main Channel				Main Channel		
1	-1.85	1.47	17 (ch)	-1.01	2.29	
2	-1.83	1.45	18 (ch)	-0.99	2.32	
3	-1.51	1.33	19 (c)	-1.93	5.02	
4	-1.32	1.20	20 (P)	-0.07	0.20	
5	-0.53	0.69	21 (P)	-0.00	0.00	
6	-0.34	0.25	Branch	Branch at Cell 11		
7	-0.37	0.15	1	-0.07	0.10	
8	-1.26	0.46	2	-0.11	0.18	
9	-2.57	2.34	3	-0.04	0.07	
10	-2.04	2.28	4	0.00	0.00	
11	-1.56	2.13	Branch at Cell 15			
12 (ch)	-1.32	2.12	1	-0.20	0.32	
13 (ch)	-1.41	2.35	2	-0.30	0.55	
14 (ch)	-1.52	2.63	3 (FW)	-0.06	0.10	
15 (ch)	-1.41	2.56	4 (FW)	0.00	0.00	
16 (ch)	-0.95	2.07				

Footnotes:

(ch) = Channel (c) = Culvert (P) = POLB pond (FW) = USFWS pond

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 11 Maximum Velocities in West Arm (pre-POLB ponds)						
Velocity (ft/sec)			Velocity (ft/sec)			
Cell No.	ebb	flood	Cell No.	ebb	flood	
Main Channel		Branch at Cell 3				
1	-1.05	1.03	1	-0.55	0.49	
2	-1.02	1.00	2	-0.26	0.25	
3	-1.34	1.34	3	0.00	0.00	
4	-1.34	1.39	Branch at Cell 4			
5	-0.99	1.06	1	-0.48	0.44	
6	-0.93	0.99	2	-0.23	0.22	
7	-1.02	1.07	3	0.00	0.00	
8	-1.07	1.14	Branch	Branch at Cell 11		
9	-1.17	1.26	1	-0.48	0.55	
10	-1.25	1.39	2	-0.45	0.51	
11	-1.12	1.34	3	3 -0.36 0.43		
12	-0.35	0.42	4	-0.25	0.30	
13	-0.16	0.17	5	-0.16	0.18	
14	-0.07	0.08	6	-0.10	0.11	
15	0.00	0.00	7	-0.05	0.06	
			8	0.00	0.00	

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 12 Maximum Velocities in East Arm (pre-POLB ponds)					
	Velocity (ft/sec)			Velocity (ft/sec)	
Cell No.	ebb	flood	Cell No.	ebb	flood
	Main Chani	nel	Main Channel		
1	-0.52	0.52	13 (ch)	-0.19	0.19
2	-0.50	0.50	14 (ch)	-0.18	0.18
3	-0.45	0.45	15 (ch)	-0.17	0.17
4	-0.39	0.39	16 (ch)	-0.15	0.15
5	-0.21	0.21	17 (p)	-0.04	0.04
6	-0.08	0.07	18 (p)	0.00	0.00
7	-0.03	0.03	Branch at Cell 11		
8	-0.05	0.05	1 -0.05 0.05		0.05
9	-0.24	0.24	2 -0.07 0.07		0.07
10	-0.21	0.21	3	-0.03	0.03
11	-0.16	0.16	4	0.00	0.00
12 (ch)	-0.07	0.07			

Footnotes:

(ch) = Channel (p) = POLB pond

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

relationship is shown in Figure 9. This criterion indicates that uncohesive, fine and medium

sand is most easily eroded, but that cohesion tends to bind smaller clay and silt size

particles together to resist erosive forces. Once mobilized, however, the smaller sediments

will stay in motion under the influence of smaller current velocities. In other words, sand-

sized particles would be most easily mobilized as the current velocity increases and the first

to settle out as the currents decrease.

An empirical relation for the threshold of sand-sized material was presented by Costa and

Isaacs (1977) and has been applied to tidal flows by Stauble et al. (1987, 1988), Bhogal

(1989), and Bhogal and Costa (1989). This criterion relates the critical velocity, depth of

flow, and sand grain size and is given by:

where

 V_c = the critical mean velocity (ft/sec)

D = the depth of flow (ft)

g = the median grain size

K = 1.168

a = 0.1

b = 0.4

 $V_c = K(D)^a(g)^b$

Egn (4)

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

K, a, and b are empirical constants determined by using field and flume data. This

relationship was derived for a range of grain sizes from about 0.1 to 0.9 millimeters

(mm).

The above relations are used as the basis of the sediment deposition/erosion analysis for

the NWR tidal saltmarsh. The results of the analysis of sediment samples collected from the

tidal saltmarsh are used to define the characteristics of the sediment. The results of the

hydrodynamic model provide information on flows throughout the tidal saltmarsh.

Sediment Characteristics

Sediment samples were collected at the locations shown in Figure 10. The samples were

analyzed for chemical content and grain size. As discussed above, the grain size

distribution determines the ability of the sediment transport mechanisms to transport

material. A summary of the results of the grain size analyses is shown in Table 13. The

analysis results indicate that approximately 40 percent of the surface sediments in the tidal

saltmarsh are sand-sized, with most of the remaining sediments in the silt and clay range.

The U.S. Department of Agriculture defines these classifications based on grain size as

follows:

B-62

Table 13 Seal Beach Sediment Grain Size Analysis					
Sample No.	Location (a)	% Sand	% Silt	% Clay	
1	W	5.3	63.1	31.6	
2	w_	23,4	26.0	50.6	
4	W	37.8	47.1	15.2	
5	W	4.8	82.6	12.7	
8	W	64.1	22.1	13.8	
11	W	55.3	28.2	16.5	
12	W	72.2	14.7	13.2	
15	W	74,6	19.0	6.4	
24	w_	5.9	62.7	31.4	
25	W	55.5	41.5	3.0	
Average:		39.3	40.7	19.4	
3	М	75.1	3.0	21.9	
6	M	6.0	56.8	37.4	
7	M	15.8	72.8	11.4	
9	М	38.1	32.2	29.8	
10	M	15.1	53.3	31.6	
13	M	42.3	40.2	17.6	
16	M	62.4	31.4	6.3	
21	M	81.2	15.1	3.8	
28	M	28,5	38.1	33.4	
29	M	41.9	36.2	21.9	
Average:		40,6	37.9	21.5	
14	E	10.7	66.5	22.9	
17	E	82.5	14.0	3.5	
18	E	31.9	43.2	24.9	
19	E	70.8	23.7	5.5	
22	E	31.9	45.4	22.7	
26	E	3.8	89.8	6.4	
27	E	53.3	46.7	0.0	
Average:		40.7	47.0	12.3	
20	AB	29.5	32.9	37.6	
23	AB	89.6	8.9	1.5	
Average:		59.5	20.9	19.6	
(a) W = West Arm					

(a) W = West Arm

M = Middle Arm

E = East Arm

AB = Anaheim Bay

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Classification	Grain Size, mm	
Sand		
Very Coarse	1 to 2 mm	
Coarse	0.5 to 1 mm	
Medium	0.25 to 0.5 mm	
Fine	0.1 to 0.25 mm	
Very Fine	0.05 to 0.1 mm	
Silt	0.05 to 0.002 mm	

Deposition/Erosion Analysis

Clay

Typically, the median grain size is used to evaluate the tendency of the sediment to be mobilized and/or transported. Analysis performed on the sediment samples by Geochemical and Environmental Research Group (GERG) provided a range of grain sizes in the NWR sediment (e.g., clay, silt, sand, etc.).

< 0.002 mm

Based on the Hjulström diagram, the velocity required to mobilize sediment with median grain sizes in the sand range can vary from about 18 to 40 cm/sec (0.6-1.3 ft/sec) depending on the value of the median grain size. Current velocities for mobilization of sediment with median sizes in the silt range can range from about 25 to 190 cm/sec (0.8 to 6.2 ft/sec) depending on the value of the median grain size. Similarly, threshold velocities for deposition of suspended sediments range from about 0.38 to 15 cm/sec (1.012 to 0.5 ft/sec) for silt-sized sediments. These ranges of current velocities make identification of

CLE-C01-01F237-S2-0001

Version: Final

Revision: 0

areas with the potential for sediment mobilization and deposition along each branch of the

tidal saltmarsh approximate, only.

General observations can be made from the available data. A comparison of the grain size

data in Table 13 with the sample points shown on Figure 10 indicates that the sediments

generally have a greater fraction of sand-sized particles closer to the mouths and in the

main channels of the three arms and a greater fraction of silt-sized particles at points further

into the tidal saltmarsh and off of the main channel. This general distribution is related to

current velocities at which particles with different grain sizes are deposited. As seen in

Figure 9, the velocity that particles start to deposit as bottom sediments decreases with

sediment particle size. The flow in the tidal saltmarsh decreases with distance from the

mouth up the tidal saltmarsh and into the branches. The larger particles are expected to be

deposited first closer to the mouth and the smaller particles deposited further into the tidal

saltmarsh where velocities are generally lower. This is the general pattern seen from the

grain size evaluation.

The following approach was taken for evaluating the erosion/deposition tendencies for the

tidal saltmarsh:

o Calculation of the threshold current velocity for the most easily mobilized grain size

(i.e. fine sand) using Equation (4)

B-68

SCO100217E0.WP5\95

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

o Evaluation of required current velocities for mobilizing grain sizes in the silt range

using the Hjulström diagram (Figure 9)

o Evaluation of velocities that result in deposition of the above grain sizes based on

the Hjulström diagram

o Comparison of current velocities required for erosion and deposition with the

maximum current velocities calculated by the hydraulic model presented above

o Identification of areas of the tidal saltmarsh that are prone to erosion or deposition

Threshold Velocities for Sand

Equation (4) calculates the threshold velocity as a function of grain size and water depth.

For a given grain size, the critical threshold velocity is a function of the water depth only.

Table 14 presents the threshold velocity for sand with a median grain size of 0.1 mm. The

variation with depth is relatively small, and the depths throughout the tidal saltmarsh are

typically on the range of 1 to 15 feet for threshold velocities for 0.1 mm diameter sand of

about 0.5 to 0.6 ft/sec. The velocities in Table 14 assume a median grain size of 0.1 mm.

For sediments that are predominantly clay or silt, the threshold velocities will be higher.

B-69

SCO100217E0.WP5\95

Revision: 0

Table 14 Threshold Velocity for 0.1 mm Diameter Grain Size Sediment					
Water Depth Threshold Velocity (ft/sec)					
1 0.47					
2 0.5					
5 0.55					
. 10 0.59					
20	0.63				

Table 15 presents threshold erosional and deposition velocities for sediment grain sizes of 0.4, 0.2, 0.05, and 0.015 mm based on the Hjulström diagram. The 0.2 mm grain size corresponds to the minimum threshold velocity in the diagram. As can be seen, the threshold velocities for 0.2 mm compare with the velocities calculated for the minimum sand size using Equation (4).

Table 15 Critical Velocities for Erosion and Deposition ^a						
	Erosional Threshold Velocity (ft/sec) Deposition Velocity					
Grain Size (mm)	High	(ft/sec)				
0.4	0.68	0.57	0.10			
0.2	0.66	0.56	0.05			
0.05	0.98	0.72	0.01			
0.015	1.7	1.5	0.003			
a Based on the Hjulström Diagram						

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Erosion/Deposition Potential

Areas that are prone to deposition or erosion can be identified based on the values

presented in Tables 14 and 15. For the purposes of this study, the potential for erosion is

considered high in areas with average velocities greater than 1.5 ft/sec and moderate in

areas with average velocities greater than 0.6 ft/sec corresponding to the approximate

threshold velocities required to mobilize silt and fine sand particles, respectively. Areas

prone to deposition are considered to be those with maximum velocities less than 0.1 ft/sec

corresponding to the velocity at which medium sand will settle out. Figures 11 through 15

indicate areas in the tidal saltmarsh that are prone to deposition or erosion based on this

criteria, along with the results of the model runs. Figures 11 through 13 illustrate the

current conditions in the tidal saltmarsh, while Figures 14 and 15 indicate the conditions

prior to construction of the POLB ponds.

Under present conditions, the main channels for all three of the arms of the tidal saltmarsh

generate sufficient velocities over most of their lengths to mobilize bottom sediments. Areas

that are prone to deposition are generally at the ends of the smaller tributary channels and

in the POLB ponds.

Models of the pre-POLB pond conditions for the west and east arms show much less

tendency for erosion than under present conditions. The west arm model results indicate

that sufficient velocities could have been developed over the lower two thirds of the arm to

B-71

SCO100217E0.WP5\95

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

mobilize sand-sized particles, with deposition potential at the end of the main channel and

ends of the minor branch channels. The east arm results indicate that without the POLB

ponds, there was little to no tendency for erosion through the main channel. Again, areas

at the ends of the main and branch channels are prone to deposition.

Threshold velocities determined above for sediment mobilization assume that the bottom

sediments are exposed directly to the currents. Field observations indicate that this was

not the case for areas of the tidal saltmarsh that are occupied by eel grass. Coverage of

eel grass varied from patches to complete coverage from shore to shore in some tidal

channels. Where present, eel grass shelters the bottom sediments from the currents and

reduces the potential for sediment movement. Eel grass is generally more prevalent in the

lower portions (bayward) of the arms.

Although eel grass will reduce the amount of sediment mobilization, patches of exposed

sediments appear to be present in most sections of the tidal saltmarsh. As a result, the

potential for sediment mobilization remains in most areas as shown in Figures 11

through 13.

Conclusions

The construction of the POLB ponds in 1990 has increased the amount of water pulled into

the NWR tidal saltmarsh during each tidal cycle (tidal prism) and has increased flow

B-72

SCO100217E0.WP5\95

SC070020.MN

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

SC070020.MN

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Culvert

Moderate Erosion Potential

Deposition-Prone Areas

Dominant Transport
Direction

Figure 14
SEDIMENT TRANSPORT
POTENTIAL IN THE WEST ARM OF
THE SEAL BEACH NWR - PRE-POLB POND CONDITIONS

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

SC070020.MN

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

velocities in the tidal channels. This has resulted in significant changes in patterns of

sediment erosion and deposition in the NWR, which can affect the distribution of

contaminants. Some areas that were not prone to erosion prior to the construction of the

POLB ponds are now expected to experience erosion. For example, prior to the POLB

pond construction, there was moderate potential for erosion in the lower two thirds of the

western arm of the tidal saltmarsh. After POLB pond construction, velocities in the channel

increased to the point that the entire length of the western arm below Bolsa Avenue has

high erosion potential. The result is that contamination in areas that are subject to

increased erosion (for example, the western arm of the NWR) could be reduced, while areas

of deposition (for example, the POLB ponds) could experience increased contamination.

The time required for the redistribution of sediments from the pre-POLB pond to post-POLB

pond conditions depends on the characteristics of sediments in the affected areas and

coverage of the tidal channels by eel grass (which reduces erosion, but is, itself,

susceptible to scouring by increased tidal velocities). It is possible that when samples for

the NWR study were taken in 1992, 2 years following the construction of the POLB ponds,

sediment distribution was (and still may be) in flux.

The increased tidal prism resulting from the construction of the POLB ponds also results in

increased intrusion of water from Anaheim Bay into the NWR tidal saltmarsh system. This

will result in significantly more water from Anaheim Bay flowing into the NWR during tidal

exchange. Tidal exchange with Anaheim Bay is one potential source of contaminants into

B-83

SCO100217E0.WP5\95

CLE-C01-01F237-S2-0001

Version: Final

Revision: 0

the NWR tidal saltmarsh system because runoff from virtually the entire urban watershed

surrounding the NWR enters Anaheim Bay directly or from Bolsa Chica Channel and

Huntington Harbour. STORET DATA included in Appendix A, Watershed Characterization,

indicate the potential for addition of contaminants to the NWR from this increased flow from

Anaheim Bay. Additionally, stratification of the contaminated freshwater from the Bolsa

Chica Channel over the saline water of the bay would reduce mixing and dilution of this

contaminated water with relatively clean water from Anaheim Bay. This would result in

increased concentrations of contaminants entering the NWR.

Runoff from the NWS to the northwest of the NWR discharges into the western arm of the

tidal saltmarsh near the intersection of Kitts Highway and Bolsa Avenue. Agricultural runoff

from the NWS discharges into the Bolsa Cell of the NWR in an area that is connected

hydraulically to the central arm of the NWR. The elevated contaminant concentrations

identified in sediments and biota (see Appendix C, Evaluation of Seal Beach NWR Sediment

Chemistry Data, and Appendix D, Environmental Contaminants in the Food Chain, NWS

Seal Beach) indicate possible contribution of contaminants from the NWS.

Subsidence ongoing in the Seal Beach area is expected to result in increased

sedimentation in the NWR, particularly over the tidal flats. Subsidence of the tidal saltmarsh

will result in greater inundation with water from Anaheim Bay (greater depth for longer

periods of time) resulting in more sediments deposited onto the tidal flats. This increases

B-84

SCO100217E0.WP5\95

Version: Final Revision: 0

the potential for contaminated sediments suspended in water from Anaheim Bay to be deposited in the NWR.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

REFERENCES

Bhogal, V.K. March 1989. "A Sediment Dynamics Model for Flood and Tidal Delta

Evolution." Marine Technology Society Journal. 23(1):37-43.

Bhogal, V.K., and S.L. Costa. 1989. Modeling Flood Tidal Deposits in Tidal Inlets. Oceans

89.

CH2M HILL. September 11, 1989. Changes in Salinity in Coyote Creek because of

Municipal Effluent Flow, Stream Flow, and Bathymetry. Draft Technical Memorandum.

Costa, S.L., and J.D. Isaacs. November 1977. The Modification of Sand Transport in Tidal

Inlets. Proc. Symposium on Coastal Sediments and Structures, ASCE. Charleston, South

Carolina.

Graff, W. H. 1971. Hydraulics of Sediment Transport. McGraw-Hill, Inc.

National Ocean Service. 1993. Tide Tables 1993, High and Low Water Predictions, West

Coast of North and South America, Including the Hawaiian Islands. U.S. Department of

Commerce.

B-87

SC0100217E0.WP5\95

Revision: 0

Koutitas, C. G. 1988. Mathematical Models in Coastal Engineering. Pentech Press Limited.

SeaDyn, Inc. March 22, 1993. Anaheim Bay Wetlands Tide Monitoring. Technical Memorandum from David Dykstra/Sea Dyn, Inc. to Steve Costa/CH2M HILL.

Stauble, D.K., et al. 1988. Inlet Flood Tidal Delta Development Through Sediment Transport Processes, pp 319-347 in: D.G. Aubrey and L. Weishar (eds.), Hydrodynamics and Sediment Dynamics of Tidal Inlets: Lecture Notes on Coastal and Estuarine Studies. Volume 29. Springer-Verlag.

Stauble, D.K., et al. May 1987. Sediment Dynamics of a Sand Bypass Inlet. Reprinted from "Coastal Sediments '87." WW Div./ASCE. New Orleans, LA.

Attachment 1

BATHYMETRIC AND WATER COLUMN PROFILE DATA

(3-1)	0.00				-0-			0 4 62	298
		2		4		A Property of the Control of the Con			
		CO							
	\	2 M S P D	12 M/SPP	Σ=\ <i>ω</i> α.Δ	12 M / S P D			2	12 H SP D
	Total Control	20	20	M / P L -20	-16 M É L		Syncton Changes	20	20
		Ft	Ft	Ft	Ft			F	Ft

NWS :	5B -1	IWR I	Nov c	72 W/	W ARM
TRAHS	ECT	NO.		START	8:20 PST
START	W	BANK	30	FT FROM	SHORE
 FINISH	E	BANK	10	FT FROM	SHORE
 NOTES: TB=19.00 Sg= 28.57	C T	s = 19.0	°C		
Se= 28.5%	11 5	s = 28.5	1/1		

.

- Table 1	NWS SB-HWR I HOY 92 W/W ARM
	TRANSECT NO. (2) START 8130 PST
	START E BANK 30 FT FROM SHORE
	OTTAL DISCOURS
	FINISH W BANK 5 FT FROM SHORE
	NOTES:
	TB = 19.5°C TG = 19.5°C @ 842 SB = 32 /10 SG = 32%

. .

NWS	5B -6	IWR	1 Hoy	92	W/E	ARM
TRANS	SECT	NO.	3	Sī	ARTOB	157 PST
START		BANK		FT	FROM	SHORE
 FINISH		BANK		FT	FROM	SHORE
 NOTES T = 18°0 S = 32	: Max 2/00	Depth	88"_ (H)	Mud.	flots (b) across o orn Dra	rd trocks) chamel ce Done

•

NWS SB-	HWR I	NOV 92 W/E ARM
TRANSECT	NO.3A/	38/36 START 9:05 PST
START	BANK	FT FROM SHORE
·		
FINISH	BANK	FT FROM SHORE
	·	
NOTES: Dep	th in Ca	Her @ 3A % Zft
14		<u>e 38 % 377</u>
(HO	TRACE	TAKEH @ SCZ3-48+
# Fair	ty const	and Depth Across the
chan		

•
ART 9:12 PST
FROM SHORE
FROM SHORE
was bank

•	NWS SB-NWR I HOY 92 W/E-ARM
_	TRANSECT NO. 5 START 9:22 PST
_	START (1) BANK 20 FT FROM SHORE
	FINISH E BANK 15 FT FROM SHORE
	NOTES: grass bads scattered along this reach TR = 1965:CTs = 19.5°C
	NOTES: grass bads scarpered along this reach
	TR = 19:5.0 T= 19.5%
	S8= 32% S3= 32%

...

:	NWS :	SB -	HWR I	NOY C	12.	W	ARI	4
	TRAHS	ECT	NO. 6	A	ST	ART_C	1:30	PST
	START	E	BANK	10	FT	FROM	SHO	RE_
	FINISH	W	BANK.	30	_FT	FROM	SH0	RE
	NOTES:	• • • • • • • • • • • • • • • • • • •						
						•••••	••,• • •	

.....

NWS	SB -1	HWR I	HOY	92_	W)	ARM	
 TRAH	SECT	NO. 10	B_	STA	ART C	2:34 PS	ST
START	W	BANK	30	FT	FROM	SHORE	•
		·	1.13		ela e especial de puis		
FINISH	E	BANK.	10	FT	FROM	SHORE	
	6A	\$ 6B	0 Sa	e lo	catrice		
NOTES	•				*	And the second s	
TB=	19.50	To	-196	5 %			
3B=	32,25	- To	= 37	2.25%	<u> </u>	•	*

. . . .

.

	NWS SB-NWR I NOV 92 W ARM
	TRANSECT NO. 7 START 09:45 PST
-	START W BANK 10 FT FROM SHORE
-	FINISH E BANK 40 ET ERAM SHAPE
	NOTES: 001 grand beds scattered in chand NOTES: T5= 19.5°C T5= 19.5°C S8= 32.25% S5= 32.25%
	TB = 19.5°C TS= 19.5°C

_	
<i>-</i>	NWS SB-NWR I NOV 92 W ARM
	TRANSECT NO. 8 START 10:00PST
_	
	START 5 BANK 6 FT FROM SHORE
	*
	FINISH N BANK 60 FT FROM SHORE
	FINISH N BANK 60 FT FROM SHORE Fel grass along H bank
	NOTES: Spot soundings at 60, 40, 20, 10.
	Pt @ 41/2, 4, 3, 3 ft respectively

	NWS	SB -1	HWR.	I HOY	92.	W	ARM
مند نوووی	TRAHS	ECT	NO.	9	ST	ART	PST
	START	14	BANK	*	FT	FROM	SHORE
	FINISH	5_	BANK	30	FT	FROM	SHORE
	NOTES	* CO	23'h	et fi	an b	ant to	30A
	and the second second second second						

_	
	NWS SB-NWR I NOV 92 W/BZ ARM
······································	TRANSECT NO. SPOT START 10:15 PST
	9A,B,C
	START BANK FT FROM SHORE
	FINISH BANK FT FROM SHORE
	NOTES: Along Crewler A & 4-43'
	BN 5' CN 3'-3'K'

•

NWS SE	-HWR I HOY	92 W/B-2	ARM
TRANSEC	T NO. SPUT	START	0:25 PST
 START	BANK	FT FROM	SHORE
 FINISH -	BANK _	FT FROM	SHORE
 NOTES:	Spat x 45	+	

red	NWS SB-HWR I HOY 92 W ARM
	TRANSECT NO. 10 START 10:30 PST
	START S BANK 10 FT FROM SHORE
	FINISH N BANK FT FROM SHORE
	e.grous started @ 240% across
_	NOTES: depth at A, B, C. an chart 6-7
_	Dan chart mograss Th= 20°C Sh = 32,25°/00 Tg= 20°C Sg=31.5"
	TB=20°C SB= 32,25% TG=20°C SK=31.5
	* Salmity Change @ 2 41/2 ft below Surface
,	below Surface

NWS S	5B -1	IWR I H	or 92 C/W	ARM
TRAHSI	ECT_	NO. 11	START	105 PST
START	E	BANK	FT FROM	SHORE
FINISH_	W	BANK	FT FROM	SHORE
NOTES:	Pole	sounding	15 14=4/2	19 -20 11°C
	(N) d	istances channel		
			,	S 200
•			フスシン	1-104/
				C=31.110
NWS SI	B -K1	NR 1 HOY	192 C/C	ARM
		·		ARM
TRANSE	CT	·	192 C/C	ARM 18 PST
TRANSE	CT E_ N_	NO. 12 BANK	92 C/C START 11 FT FROM	ARM LIS PST SHORE
TRANSE	CT E_ N_	NO. 12 Bank	92 C/C START 11 FT FROM	ARM IS PST SHORE SHORE
	TRANSI START FINISH	TRANSECT START E FINISH W NOTES: Pole	TRANSECT NO. 11 START E BANK FINISH W BANK NOTES: Pole Sauding	START E BANK FT FROM FINISH W BANK FT FROM NOTES: Pole soundings 1/4=4/2 = On distances 1/2=6/4/2 across channel 3/4=4/2/

	NWS SB-HWR I HOY 92 C/E ARM
_	TRANSECT NO. 13 START H'20 PST
- -	START S BANK 10 FT FROM SHORE
	FINISH N BANK 50% FT FROM SHORE
	Spot Sandugs N-half &3' NOTES: TB=20°C TS=20.5°C
	SB=# % SS-345 600 31.75 00 SS-345 600
	34

	NWS SB-NWR I NOV 92 C ARM
	TRANSECT NO. 14 START 11:40 PST
<u> </u>	START E BANK 5 FT FROM SHORE
	FINISH W BANK 50% FT FROM SHORE Spot sounding 3 50% -5'
	Spot sounding 3 50%-5' NOTES: 75% 4!
-	90% 3'

NWS SB-NWR I HOY 92 C ARM
TRANSECT NO. 15 START 11:48 PST
 START W BANK 10 FT FROM SHORE
 FINISH E BANK 40% FT FROM SHORE
 Spots of 50%, 75% 85% were 6.5) NOTES: 5, & 4 C+
 NOTES: 5, & 4 C+ Tr. 20.5 () Tr. = 20.75°C Sp. 31.25%

The state of the s

	NWS S	5B-1	IWR	1 HOY G	12		ARM	
_	TRAHSI	ECT.	NO.	16_	ST	ART	2:00 PST	***
	START	W	BANK	20	FT	FROM	SHORE	
-	FINISH _	E	BANK	50%	FT	FROM	SHORE	
		Spot	doptu	s at	60%	75 % 89	5%	
_	NOTES:			of	4',	3/2'3	***	-
1								-

المراجعة الم

NWS	SB -	HWR !	Nov C	12 _	C	ARM
TRAHS	ECT	NO.	6A	STA	ART 1	2:08 PST
 START	W	BANK	20	FT	FROM	SHORE
 FINISH	巨	BANK	60%	FT	FROM	SHORE
 NOTES	Spo	+ @	50,7 5' and	5, 13/ ₂	··	

4.362

							
V	NWS:	5B -1	IWR I	Nov 9	2		ARM
	TRAHS	ECT	NO	7_	START	-12;	15 PST
	START	E	BANK	/	FT FRO	M ;	SHORE
						······	
	FINISH	W	BANK_		FT FRO	M	SHORE
		600	+10040	Dist	- Dept		
	NOTES:	3	+ depts	3	01,31		er en er ge Ge n erale
	ekara	uá su	to bottom	24	% 3½'		
	1-3	CH' h	to bottom	7 50	254		
			ing on Fito		% 6'		
				-30	6'		
1000 de							

. . .

	NWS	SB -1	HWR	1 Nov	92	CFE	ARM	_
-	TRAHS	SECT	NO.	18	S	TART 1	2:25 PS	57
	START	E	BANK	ID R+Q	FT	FROM	SHORE	
	FINISH	W	BANK	See Box	FT FT	FROM	SHORE	
	NOTES	: Pary 19	-59+ -5ft	Spot	- read	Ts	, = 21,5	. :
	-	12ay [1-317	ノ >g.	- 51	> s	- 30,2	

manus e ser il companio di minimizione minimizioni della companio della companio della companio di discolare d

•

a sough	NWS	5B-N	WR	I HOY 9	12.	E	AR	M
	TRAHS	SECT	NO.	19	ST	ART_	1:40	PST
	START	W	BANK	1/2 channel	FT	FROM	SHO	RE
						·		
			~					
[FINISH		TRANK	20	<u> </u>	FROM	<u> </u>	DKE
		Sont	221 -				SHC)KE
		Sont	221.	50' from	w	oonle		OKE
· · · · · · · · · · · · · · · · · · ·		Spot (anding)	22/-		w 1	oonle		OKE_
		Sont	22/-	50' from	w 1	oonle		OKE
· ·		Sont	22/-	50' from	w 1	oonle		OKE

•

and the second s

	NWS	SB -	HWR.	I HOY	92	E	ARN	1
ا سید	TRAHS							
	START	W	BANK	8620	oti i EL	FROM	E SHOT	int) 25
	Finish	E 1Parity	BANK	40	FT	FROM	SHO	RE
	NOTES	:Spot 11	2 Runs,	Channe O' from !	N. Bunje	to east	point,	
			2/	widh	from w . from c	· Bunk	78	
		TB =	20,5		Ts = 2	<u>کا ۔۔۔۔</u>		
		Sg =	31.0	- 	S _s =	31		
			•			$\cdot \cdot $		

_					
)	NWS SB-1	IWR I NOV	92	E	ARM
	TRANSECT	NO. 21	ST	ART 2:1	S PST
	START POINT	BONK 30%	6 ET	FRAM Pol	SHADE
				•	
	FINISH	BANK 40"	b FT	FROM	SHORE
	spor read	ina			
	NOTES: 3½' a	. 30 from soin	: ;,		
	7' ~	4 chunnel from	Point	·	
	2' ~	1/4 chemnel from	1 -		1
		depter a 2' from			

ا و دور دوم الدور الرفيد المدارية الدومينية و المستور المستور المستور وهما المواد من مير ميون المدار والمساور والمساور

NWS	SB -1	IWR I	Nov «	92_	E	ARM
TRAH	SECT	NO.	22_	STA	TSIA	2:26 PST
START		BANK		FT	FROM	SHORE
FINISH		BANK		FT	FROM	SHORE
NOTES						
	140' 23'	3/2 3/2 3/2	15hur	J	······································	
spor f	adings	220 - 1	21/2 (buck			

NWS	SB-HWR I NOY	92 <u>E</u>	ARM
 TRAHS	SECT NO. 27	START_	213- PST
 START	BANK	FT FROM	SHORE
 FINISH	BANK	FT FROM	SHORE
 NOTES	500 14 1/2 31/2 31/2 31/2	3/4 3	· · · · · · · · · · · · · · · · · · ·
	TR = 20½°c- Sr = 31,5%	Ts = 71.25 Ss = 30.75	

- ----

للتراب فالتكنيس فيسترا فياسا الانسا

-

	NWS	5B -	-HWR	<u> 1 H</u>	ov 92	e	AF	M
	TRAH	SECT	NO	- 24	S	TART	2:50	PST
	START	START BANK				- FRO	M SH	ORE
	FINISH		BAN	IK	F	r Fro	M SH	ORE
	NOTES	5: SAI	Charle	: 1	of eel g			i
	یں	501	1/4	1/2	74		E	
		_ 1		_ `	3,75'	~ i		•

NWS	SB-HWR I HOY 92 E ARM						
TRAH	ISECT NO. 25 START 3:00 PST						
START	T S BANK 12 WM FT FROM SHORE						
FINISH	N BANK 5' FT FROM SHORE						
NOTE	5: Spot chelle 3'@ /4 Dist from South Bunk						
$T_{g} \sim 20.75$ $T_{s} = 21$ $S_{R} = 31.5$ $S_{s} = 31.75$							
Mah	or cut out on chamme I edge was reached						
Com	muel appearer wider than non- to reading portion of true						

	NWS SB-	HWR I HOY	92 <u>E</u>	ARM
-	TRANSECT	NO. 26	START 3	PST
	START	BANK	FT FROM	SHORE
	Sa)	charles	FT FROM	
	NOTES: A-	8' on Fathometer	digital Yeadon't	

	NWS SB-HWR I NOV 92 ARM
	TRANSECT NO. 27 START 3,20 PST
	START N BANK 5 FT FROM SHORE
·	FINISH S BANK 5 FT FROM SHORE
	NOTES: IN Drebyel Channel of junction of channels from
	$T_{s} = 20.5$ $T_{s} = 21$ $S_{s} = 32$ $S_{s} = 32$

and the second s

-	1			
	NWS SB	-HWR I HOV	<u> 92</u> €	ARM
	TRANSEC	T NO. 28	START	7:37 PST
	START	BANK	FT FROM	SHORE
	FINISH	BANK	FT FROM	SHORE
	NOTES: A	- 41/21 E-42' M	D. 61/2 W	- 6
	B TS	= 32%	Ts= 21°C Ss= 32%	

	NWS	SB -	NWR	1 Nov	92	E	ARM
-	TRAHS	ECT	NO.	29	S ₁	ART 3	45 PST
	START		BANK	(P)	FT	FROM	SHORE
	FINISH	N	BANK		FT	FROM	SHORE
	NOTES		•	to'S.	Chu Mid	unal sta	vt e
.Y. 6	Spa c	heck	3, @ .	20' fra			

400 In main body of E channel - depths to less than
2 feet - publish out.

Transect Estimated Est. Depth Outside Channel Outside Channel Outside Channel Channel Outside Channel Channel Outside Channel Channel Outside Outside		T	1	1				Depth	1	X-sect.	X-sect.
Transect Arm	1	Estimated	Estimated	Est. Denth	Max	Time	Estimated	1	Channel	1	Area
No.	Transec		1				1	1	1		(ft^2)
1 80 40 2.8 7.5 08:20 3.30 0.00 4.20 83.9 48 2 80 45 2.5 8.75 08:30 3.31 0.00 5.44 122.3 49 3 60 0 0.67 0.67 08:57 3.36 0.00 0.00 0.0 16 3a 50 0 2 2 09:05 3.38 0.00 0.00 0.0 20 3b 55 0 3.5 09:05 3.38 0.00 0.00 0.0 20 4 55 20 2 4 09:12 3.40 0.00 0.66 6.0 23 5 55 20 2 3.5 09:22 3.43 0.00 0.07 0.7 22 6 80 40 2 8 09:30 3.46 0.00 4.48 168.3 666 7 125 75				•			l l	6	1 '	1	MHHW
2 80 45 2.5 8.75 08:30 3.31 0.00 5.44 122.3 49 3 60 0 0.67 0.67 0.657 3.36 0.00 0.00 0.0 16 3a 50 0 2 2 09:05 3.38 0.00 0.00 0.0 10 28 3b 55 0 3 3 09:05 3.38 0.00 0.00 0.00 0.0 28 3c 80 0 3.5 3.5 09:05 3.38 0.00 0.00 0.00 6.0 22 44 09:12 3.40 0.00 0.60 6.0 22 5 5 55 20 2 3.5 09:23 3.43 0.00 0.07 0.7 222 6 80 40 2 8 09:30 3.46 0.00 4.49 168.3 661 80 81 10 2 2 80 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(</td> <td>(</td> <td>(,</td> <td></td> <td>1</td>							(((,		1
2 80 45 2.5 8.75 06:30 3.31 0.00 5.44 122.3 49 3 60 0 0.67 0.67 0.67 3.36 0.00 0.00 0.0 10 16 3a 50 0 2 2 0.905 3.38 0.00 0.00 0.0 20 3b 55 0 3 3 0.905 3.38 0.00 0.00 0.00 0.0 22 3c 80 0 3.5 3.5 0.905 3.38 0.12 0.12 9.7 444 4 55 20 2 4 0.912 3.40 0.00 0.07 0.7 22 5 55 20 2 3.5 0.922 3.43 0.00 0.07 0.7 22 6 80 40 2 8 0.930 3.46 0.00 4.45 10.1 3.62 0.00	1	80	40	2.8	7.5	08:20	3.30	0.00	4.20	83.9	483.5
3 60 0 0.67 0.67 0.857 3.36 0.00 0.00 0.0 16 33 50 0 0 2 2 0.905 3.38 0.00 0.00 0.0 0.0 22 2 0.905 3.38 0.00 0.00 0.00 0.0 22 3.5 0.905 3.38 0.00	2	80	4	i .	1	08:30	3.31	i .	1	1	497.3
3a		60	0	0.67	0.67	08:57	3.36		1		168.6
3b	3a	50	0	2	2	09:05	3.38	0.00	0.00	E .	206.1
4 55 20 2 4 09:12 3.40 0.00 0.60 6.0 23:5 5 55 55 20 2 3.5 09:22 3.43 0.00 0.07 0.7 22-6 6 80 40 2 8 09:30 3.46 0.00 4.54 90.9 41-7 7 125 75 2 8 09:45 3.51 0.00 4.49 168.3 667 8 110 44 3.75 12 10:00 3.57 0.18 8.43 201.0 80 9 110 50 3.5 12.25 10:10 3.62 0.00 8.63 215.8 806 9a 95 0 5 5 10:15 3.64 0.36 0.86 34.3 556 9b 95 0 5 5 10:15 3.64 0.36 0.86 34.3 356 1	3 b	55	0	3	3	09:05	3.38	0.00	0.00	0.0	281.7
5 55 20 2 3.5 09:22 3.43 0.00 0.07 0.7 22 6 80 40 2 8 09:30 3.46 0.00 4.54 90.9 414 7 125 75 2 8 09:45 3.51 0.00 4.49 188.3 667 8 110 44 3.75 12 10:00 3.57 0.18 8.43 201.0 806 9 110 50 3.5 12.25 10:10 3.62 0.00 0.86 34.3 556 9a 95 0 5 5 10:15 3.64 0.36 0.86 34.3 556 9b 95 0 5 5 10:15 3.64 0.00 0.00 0.0 20.0 215.8 806 90 90 7 12 10:30 3.71 3.29 9.0 10 4.7 12 10:30	3c	80	0	3.5	- 3.5	09:05	3.38	0.12	0.12	9.7	449.7
6 80 40 2 8 09:30 3.46 0.00 4.54 90.9 414 7 125 75 2 8 09:45 3.51 0.00 4.49 168.3 667 8 110 44 3.75 12 10:00 3.57 0.18 8.43 201.0 806 9 110 50 3.5 12:25 10:10 3.62 0.00 8.63 215.8 806 9a 95 0 4 4.5 10:15 3.64 0.36 0.86 34.3 556 9b 95 0 5 5 10:15 3.64 0.36 0.86 34.3 556 9c 60 0 3 3.5 10:15 3.64 0.00 0.00 0.0 20 291 44 4 10:25 3.69 0.31 0.31 39.3 726 111 75 40 4.5 6.5	4	55	20	2	4	09:12	3.40	0.00	0.60	6.0	231.6
7 125 75 2 8 09:45 3.51 0.00 4.49 168.3 667 8 110 44 3.75 12 10:00 3.57 0.18 8.43 201.0 806 9 110 50 3.5 12:25 10:10 3.62 0.00 8.63 215.8 806 9a 95 0 4 4.5 10:15 3.64 0.36 0.86 34.3 556 9b 95 0 5 5 10:15 3.64 1.36 1.36 129.3 651 9c 60 0 3 3.5 10:15 3.64 0.00 0.00 0.0 291 9d 125 0 4 4 10:25 3.69 0.31 0.31 39.3 726 10 250 90 7 12 10:30 3.71 3.29 8.29 1047.8 2422 11	5.	55	20	2	3.5	09:22	3.43	0.00	0.07	0.7	224.7
8 110 44 3.75 12 10:00 3.57 0.18 8.43 201.0 806 9 110 50 3.5 12:25 10:10 3.62 0.00 8.63 215.8 806 9a 95 0 4 4.5 10:15 3.64 0.36 0.86 34.3 556 9b 95 0 5 5 10:15 3.64 1.36 1.36 129.3 651 9c 60 0 3 3.5 10:15 3.64 0.00 1.07 8.43 201.7 1.00 3.71 3.26 2.62 8.63 3.42 1.00 3.5 3.25 1.11	6	80	40	2	8	09:30	3.46	0.00	4.54	90.9	414.5
9 110 50 3.5 12.25 10.10 3.62 0.00 8.63 215.8 806 9a 95 0 4 4.5 10.15 3.64 0.36 0.86 34.3 556 9b 95 0 5 5 10.15 3.64 1.36 1.36 129.3 651 9c 60 0 3 3.5 10.15 3.64 0.00 0.00 0.00 0.0 291 9d 125 0 4 4 4 10.25 3.69 0.31 0.31 39.3 726 10 250 90 7 12 10.30 3.71 3.29 8.29 1047.8 2422 111 75 40 4.5 6.5 11.26 3.88 0.62 2.62 86.7 499 12 110 85 3 3.75 11.15 3.92 0.00 0.00 0.0 5.03 13 200 90 2 8 11.28 3.98 0.00 4.02 180.7 884 14 170 80 4 10 11.40 4.04 0.00 5.96 238.6 1167 15 250 140 4.5 8 11.48 4.07 0.43 3.93 352.7 1727 16 310 135 3.5 8.5 12.00 4.12 0.00 4.38 295.9 1810 16a 310 122 4 9.5 12.08 4.14 0.00 5.36 326.7 1986 17 280 280 3.5 7.25 12.15 4.17 0.00 3.08 431.4 1784 18 450 150 4 18 12.25 4.20 0.00 13.80 1005.0 3420 19 265 112 4 16 13.40 4.30 0.00 11.70 655.3 2034 20 280 50 6 8 13.55 4.28 1.72 3.72 531.8 2071 21 845 84 2 8 14.15 4.23 0.00 3.77 158.4 2923 22 190 190 3.25 3.5 14.25 4.19 0.00 0.00 0.0 0.0 1726 24 900 900 4 5.75 14.50 4.07 0.00 1.68 758.2 5649 25 110 50 3 11 1500 4.00 0.00 1.68 758.2 5649 26 75 75 8 8 8 15:12 3.92 3.08 3.08 20.2 557.2 27 110 100 4 6.5 15:20 3.86 0.14 2.64 140.5 745.8		125	75	2	8	09:45	3.51	0.00	4.49	168.3	667.0
9a 95 0 4 4.5 10:15 3.64 0.36 0.86 34.3 556 9b 95 0 5 5 10:15 3.64 1.36 1.29.3 651 9c 60 0 3 3.5 10:15 3.64 0.00 0.00 0.0 291 9d 125 0 4 4 10:25 3.69 0.31 0.31 39.3 726 10 250 90 7 12 10:30 3.71 3.29 8.29 1047.8 2422 11 75 40 4.5 6.5 11:05 3.88 0.62 2.62 86.7 499 12 110 85 3 3.75 11:15 3.92 0.00 0.00 0.0 5.06 584 499 11:4 170 80 4 10 11:40 4.04 0.00 5.96 238.6 1167 152 250 <td></td> <td>110</td> <td>1 1</td> <td></td> <td>12</td> <td>10:00</td> <td>1 '</td> <td>0.18</td> <td>8.43</td> <td>201.0</td> <td>806.0</td>		110	1 1		12	10:00	1 '	0.18	8.43	201.0	806.0
9b 95 0 5 5 10:15 3.64 1.36 1.29.3 651 9c 60 0 3 3.5 10:15 3.64 0.00 0.00 0.0 291 9d 125 0 4 4 10:25 3.69 0.31 0.31 39.3 726 10 250 90 7 12 10:30 3.71 3.29 8.29 1047.8 2422 11 75 40 4.5 6.5 11:05 3.88 0.62 2.62 86.7 499 12 110 85 3 3.75 11:15 3.92 0.00 0.00 0.0 503 13 200 90 2 8 11:28 3.98 0.00 4.02 180.7 884 14 170 80 4 10 11:40 4.04 0.00 5.96 238.6 1167 15 250	9	1	50	3.5	12.25	10:10	ŧ I	0.00	8.63	215.8	808.0
9c 60 0 3 3.5 10:15 3.64 0.00 0.00 0.0 221 9d 125 0 4 4 10:25 3.69 0.31 0.31 39.3 726 10 250 90 7 12 10:30 3.71 3.29 8.29 1047.8 2422 11 75 40 4.5 6.5 11:05 3.88 0.62 2.62 86.7 499 12 110 85 3 3.75 11:15 3.92 0.00 0.00 0.0 5.03 13 200 90 2 8 11:28 3.98 0.00 4.02 180.7 884 14 170 80 4 10 11:40 4.04 0.00 5.96 238.6 1167 15 250 140 4.5 8 11:48 4.07 0.43 3.93 352.7 1727 16 <td></td> <td>1</td> <td>0</td> <td>4</td> <td>4.5</td> <td>10:15</td> <td></td> <td>0.36</td> <td>0.86</td> <td>34.3</td> <td>556.8</td>		1	0	4	4.5	10:15		0.36	0.86	34.3	556.8
9d 125 0 4 4 10:25 3.69 0.31 0.31 39.3 726 10 250 90 7 12 10:30 3.71 3.29 8.29 1047.8 2422 11 75 40 4.5 6.5 11:05 3.88 0.62 2.62 86.7 499 12 110 85 3 3.75 11:15 3.92 0.00 0.00 0.0 503 13 200 90 2 8 11:28 3.98 0.00 4.02 180.7 884 14 170 80 4 10 11:40 4.04 0.00 5.96 238.6 1167 15 250 140 4.5 8 11:48 4.07 0.43 3.93 352.7 1727 16 310 135 3.5 8.5 12:00 4.12 0.00 4.38 295.9 1810 <td< td=""><td>9b</td><td>1</td><td>0</td><td></td><td></td><td>10:15</td><td>3.64</td><td>1.36</td><td>1.36</td><td>129.3</td><td>651.8</td></td<>	9b	1	0			10:15	3.64	1.36	1.36	129.3	651.8
10 250 90 7 12 10:30 3.71 3.29 8.29 1047.8 2422 11 75 40 4.5 6.5 11:05 3.88 0.62 2.62 86.7 499 12 110 85 3 3.75 11:15 3.92 0.00 0.00 0.0 503 13 200 90 2 8 11:28 3.98 0.00 4.02 180.7 884 14 170 80 4 10 11:40 4.04 0.00 5.96 238.6 1167 15 250 140 4.5 8 11:48 4.07 0.43 3.93 352.7 1727 16 310 135 3.5 8.5 12:00 4.12 0.00 4.38 295.9 1810 16a 310 122 4 9.5 12:08 4.14 0.00 5.36 326.7 1986	9c	ł	0	1	3.5			0.00		0.0	291.7
11 75 40 4.5 6.5 11:05 3.88 0.62 2.62 86.7 499 12 110 85 3 3.75 11:15 3.92 0.00 0.00 0.0 503 13 200 90 2 8 11:28 3.98 0.00 4.02 180.7 884 14 170 80 4 10 11:40 4.04 0.00 5.96 238.6 1167 15 250 140 4.5 8 11:48 4.07 0.43 3.93 352.7 1727 16 310 135 3.5 8.5 12:00 4.12 0.00 4.38 295.9 1810 16a 310 122 4 9.5 12:08 4.14 0.00 5.36 326.7 1986 17 280 280 3.5 7.25 12:15 4.17 0.00 3.08 431.4 1784	1	1	0		1		1 1	0.31		39.3	726.8
12 110 85 3 3.75 11:15 3.92 0.00 0.00 0.0 503 13 200 90 2 8 11:28 3.98 0.00 4.02 180.7 884 14 170 80 4 10 11:40 4.04 0.00 5.96 238.6 1167 15 250 140 4.5 8 11:48 4.07 0.43 3.93 352.7 1727 16 310 135 3.5 8.5 12:00 4.12 0.00 4.38 295.9 1810 16a 310 122 4 9.5 12:08 4.14 0.00 5.36 326.7 1986 17 280 280 3.5 7.25 12:15 4.17 0.00 3.08 431.4 1784 18 450 150 4 18 12:25 4.20 0.00 13.80 1035.0 3420 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1 1</td><td></td><td></td><td></td><td>2422.8</td></t<>							1 1				2422.8
13 200 90 2 8 11:28 3.98 0.00 4.02 180.7 884 14 170 80 4 10 11:40 4.04 0.00 5.96 238.6 1167 15 250 140 4.5 8 11:48 4.07 0.43 3.93 352.7 1727 16 310 135 3.5 8.5 12:00 4.12 0.00 4.38 295.9 1810 16a 310 122 4 9.5 12:08 4.14 0.00 5.36 326.7 1986 17 280 280 3.5 7.25 12:15 4.17 0.00 3.08 431.4 1784 18 450 150 4 18 12:25 4.20 0.00 13.80 1035.0 3420 19 265 112 4 16 13:40 4.30 0.00 11.70 655.3 2034		1	1								499.2
14 170 80 4 10 11:40 4.04 0.00 5.96 238.6 1167 15 250 140 4.5 8 11:48 4.07 0.43 3.93 352.7 1727 16 310 135 3.5 8.5 12:00 4.12 0.00 4.38 295.9 1810 16a 310 122 4 9.5 12:08 4.14 0.00 5.36 326.7 1986 17 280 280 3.5 7.25 12:15 4.17 0.00 3.08 431.4 1784 18 450 150 4 18 12:25 4.20 0.00 13.80 1035.0 3420 19 265 112 4 16 13:40 4.30 0.00 11.70 655.3 2034 20 280 50 6 8 13:55 4.28 1.72 3.72 531.8 2071 21 845 84 2 8 14:15 4.23 0.00 <td< td=""><td>4</td><td>ľ</td><td>1</td><td>i</td><td></td><td></td><td></td><td></td><td></td><td></td><td>503.4</td></td<>	4	ľ	1	i							503.4
15 250 140 4.5 8 11:48 4.07 0.43 3.93 352.7 1727 16 310 135 3.5 8.5 12:00 4.12 0.00 4.38 295.9 1810 16a 310 122 4 9.5 12:08 4.14 0.00 5.36 326.7 1986 17 280 280 3.5 7.25 12:15 4.17 0.00 3.08 431.4 1784 18 450 150 4 18 12:25 4.20 0.00 13.80 1035.0 3420 19 265 112 4 16 13:40 4.30 0.00 11.70 655.3 2034 20 280 50 6 8 13:55 4.28 1.72 3.72 531.8 2071 21 845 84 2 8 14:15 4.23 0.00 3.77 158.4 2923				1	1				1		884.0
16 310 135 3.5 8.5 12:00 4.12 0.00 4.38 295.9 1810 16a 310 122 4 9.5 12:08 4.14 0.00 5.36 326.7 1986 17 280 280 3.5 7.25 12:15 4.17 0.00 3.08 431.4 1784 18 450 150 4 18 12:25 4.20 0.00 13.80 1035.0 3420 19 265 112 4 16 13:40 4.30 0.00 11.70 655.3 2034 20 280 50 6 8 13:55 4.28 1.72 3.72 531.8 2071 21 845 84 2 8 14:15 4.23 0.00 3.77 158.4 2923 22 190 190 3.25 3.5 14:25 4.19 0.00 0.00 0.0 1726							1 1				1167.4
16a 310 122 4 9.5 12:08 4.14 0.00 5.36 326.7 1986 17 280 280 3.5 7.25 12:15 4.17 0.00 3.08 431.4 1784 18 450 150 4 18 12:25 4.20 0.00 13.80 1035.0 3420 19 265 112 4 16 13:40 4.30 0.00 11.70 655.3 2034 20 280 50 6 8 13:55 4.28 1.72 3.72 531.8 2071 21 845 84 2 8 14:15 4.23 0.00 3.77 158.4 2923 22 190 190 3.25 3.5 14:25 4.19 0.00 0.00 0.0 0.0 1726 24 900 900 4 5.75 14:50 4.07 0.00 1.68 758.2 56			1		1		1		1		1727.7
17 280 280 3.5 7.25 12:15 4.17 0.00 3.08 431.4 1784 18 450 150 4 18 12:25 4.20 0.00 13.80 1035.0 3420 19 265 112 4 16 13:40 4.30 0.00 11.70 655.3 2034 20 280 50 6 8 13:55 4.28 1.72 3.72 531.8 2071 21 845 84 2 8 14:15 4.23 0.00 3.77 158.4 2923 22 190 190 3.25 3.5 14:25 4.19 0.00 0.00 0.0 0.0 866.2 23 375 375 3.25 3.5 14:35 4.15 0.00 0.00 0.0 0.0 1726.2 24 900 900 4 5.75 14:50 4.07 0.00 1.68 758.2 5649.2 25 110 50 3 11 15:00 4.00 0.00 7.00 174.9 669.0 26a 75 75 8 8 15:12 3.92 3.08				1					1		1810.0
18 450 150 4 18 12:25 4.20 0.00 13.80 1035.0 3420 19 265 112 4 16 13:40 4.30 0.00 11.70 655.3 2034 20 280 50 6 8 13:55 4.28 1.72 3.72 531.8 2071 21 845 84 2 8 14:15 4.23 0.00 3.77 158.4 2923 22 190 190 3.25 3.5 14:25 4.19 0.00 0.00 0.0 0.0 866.3 23 375 375 3.25 3.5 14:35 4.15 0.00 0.00 0.0 0.0 1726. 24 900 900 4 5.75 14:50 4.07 0.00 1.68 758.2 5649. 25 110 50 3 11 15:00 4.00 0.00 7.00 174.9 669.0 26a 75 75 8 8 15:12 3.92 4.08 4.08 306.0 718.9 26b 65 65 7 7 15:12 3.92 3.08					l l				1		1986.7
19 265 112 4 16 13:40 4.30 0.00 11.70 655.3 2034 20 280 50 6 8 13:55 4.28 1.72 3.72 531.8 2071 21 845 84 2 8 14:15 4.23 0.00 3.77 158.4 2923 22 190 190 3.25 3.5 14:25 4.19 0.00 0.00 0.0 0.0 866. 23 375 375 3.25 3.5 14:35 4.15 0.00 0.00 0.0 1726. 24 900 900 4 5.75 14:50 4.07 0.00 1.68 758.2 5649. 25 110 50 3 11 15:00 4.00 0.00 7.00 174.9 669.0 26a 75 75 8 8 15:12 3.92 4.08 4.08 306.0 718.9 26b 65 65 7 7 15:12 3.92 3.08 3.08 200.2 557.3 27 110 100 4 6.5 15:20 3.86 0.14 2.64				1			1		1		1784.2
20 280 50 6 8 13:55 4.28 1.72 3.72 531.8 2071 21 845 84 2 8 14:15 4.23 0.00 3.77 158.4 2923 22 190 190 3.25 3.5 14:25 4.19 0.00 0.00 0.00 0.0 866. 23 375 375 3.25 3.5 14:35 4.15 0.00 0.00 0.0 1726 24 900 900 4 5.75 14:50 4.07 0.00 1.68 758.2 5649 25 110 50 3 11 15:00 4.00 0.00 7.00 174.9 669.0 26a 75 75 8 8 15:12 3.92 4.08 4.08 306.0 718.9 26b 65 65 7 7 15:12 3.92 3.08 3.08 200.2 557.3 27 110 100 4 6.5 15:20 3.86 0.14 2.64 140.5 745.8		1			3	1					3420.3
21 845 84 2 8 14:15 4.23 0.00 3.77 158.4 2923 22 190 190 3.25 3.5 14:25 4.19 0.00 0.00 0.00 0.0 866. 23 375 375 3.25 3.5 14:35 4.15 0.00 0.00 0.0 0.0 1726. 24 900 900 4 5.75 14:50 4.07 0.00 1.68 758.2 5649. 25 110 50 3 11 15:00 4.00 0.00 7.00 174.9 669.0 26a 75 75 8 8 15:12 3.92 4.08 4.08 306.0 718.9 26b 65 65 7 7 15:12 3.92 3.08 3.08 200.2 557.2 27 110 100 4 6.5 15:20 3.86 0.14 2.64 140.5 745.5	l J		- 1					1			2034.0
22 190 190 3.25 3.5 14:25 4.19 0.00 0.00 0.00 0.0 866:20 23 375 375 3.25 3.5 14:35 4.15 0.00 0.00 0.00 0.0 1726 24 900 900 4 5.75 14:50 4.07 0.00 1.68 758.2 5649 25 110 50 3 11 15:00 4.00 0.00 7.00 174.9 669.0 26a 75 75 8 8 15:12 3.92 4.08 4.08 306.0 718.9 26b 65 65 7 7 15:12 3.92 3.08 3.08 200.2 557.3 27 110 100 4 6.5 15:20 3.86 0.14 2.64 140.5 745.8	1		I .							1	
23 375 375 3.25 3.5 14:35 4.15 0.00 0.00 0.00 1726 24 900 900 4 5.75 14:50 4.07 0.00 1.68 758.2 5649 25 110 50 3 11 15:00 4.00 0.00 7.00 174.9 669.0 26a 75 75 8 8 15:12 3.92 4.08 4.08 306.0 718.9 26b 65 65 7 7 15:12 3.92 3.08 3.08 200.2 557.3 27 110 100 4 6.5 15:20 3.86 0.14 2.64 140.5 745.9	1 1								1	1	1
24 900 900 4 5.75 14:50 4.07 0.00 1.68 758.2 5649.0 25 110 50 3 11 15:00 4.00 0.00 7.00 174.9 669.0 26a 75 75 8 8 15:12 3.92 4.08 4.08 306.0 718.9 26b 65 65 7 7 15:12 3.92 3.08 3.08 200.2 557.3 27 110 100 4 6.5 15:20 3.86 0.14 2.64 140.5 745.8			J	- 1			T T	1		1	
25 110 50 3 11 15:00 4.00 0.00 7.00 174.9 669.0 26a 75 75 8 8 15:12 3.92 4.08 4.08 306.0 718.0 26b 65 65 7 7 15:12 3.92 3.08 3.08 200.2 557.3 27 110 100 4 6.5 15:20 3.86 0.14 2.64 140.5 745.6		i	4					i i	- 1		
26a 75 75 8 8 15:12 3.92 4.08 4.08 306.0 718.9 26b 65 65 7 7 15:12 3.92 3.08 3.08 200.2 557.3 27 110 100 4 6.5 15:20 3.86 0.14 2.64 140.5 745.9				1		1	1		1		
26b 65 65 7 7 15:12 3.92 3.08 3.08 200.2 557.3 27 110 100 4 6.5 15:20 3.86 0.14 2.64 140.5 745.8			1			1					
27 110 100 4 6.5 15:20 3.86 0.14 2.64 140.5 745.5				1	1		- 4		1		
		1	i i	l l	1					1	
- 20x 1 40 1 40 1 40 1 40 1 30 1 00 1 0 1 0 1 0 1 1 1 1 1 1 1 1	28a	45	45	4.5	4.5	15:35	3.74	0.76	0.76	34.4	745.5 281.9
				,		3				1	233.0
		- 1	3	T .			1	1	1		653.7

_

Attachment 2

PROGRAM LISTING

PROGRAM "SB-CIRC.BAS" Version October 1992

**** 1DH MODIFIED ONE-LAYER CIRCULATION MODEL ****
Modification of BTCHT.BAS, Version 23 May 1990
for the Seal Beach National Wildlife Refuge

Based on alogrithms from Koutitas (1988)

CH2M HILL - Applied Sciences Department
Ocean Technology Group

'This version contains modifications for printout of min, max values

Summary of Changes:

Added ability to input all data from a control file Added capability to run multiple cases Removed salinity calculation Modified channel geometry calculations to allow cases with water levels below MLLW.

ESCRIPTION OF INPUT VARIABLES:

CONTROL FILE: Contains list of data file names

(one per line)

DATA FILE: (one file for each model run)

IMAGE 1 : Program Control Switches

SW1 : switch for printout of title page w/parameter values

= 0 gives no output
= 1 prints out page

SW2 : switch for line printer output of results

= 0 no line printer output

= 1 lineprinter out put of intermediate and final results

OUTFILE\$ = name of disk file for output

SWFI : switch for input from existing data file

= 0 no input from file (i.e. cold start model run)

= 1 read initial Z,U values from an ASCII file

```
= name of ASCII file with initial values
  FIN$
  SWFO
           : switch for output to an ASCII file
           = 0 no output to file
           = 1 output final results (Z,U) to ASCII file
           = 2 output intermediate and final results to files
FOUT$
           = name of ASCII file for Z,U results output
  SWT
           : switch for type of tidal forcing
           = 0 for sine wave tides
           = 1 for synthetic tides
  OPS
          : switch for cell data to printout
          = # (print data for every # cells - starts at 1)
 IMAGES 2,3,4
 TITLE{1,2,3}$ are titles printed out on each page of output
 IMAGE 5 : Calculation Parameters and Limit Controls
 DT
          = time step between iterations in seconds
 DX
          = Ox space step in meters
          = number of grid indices
 IM
          = weighting factor of Lax type time difference
 EDH
 NM
          = maximum number of time steps before program ends
         = number of time steps between intermediat output
 NC
 TOUT
         = interation time when intermediate output begins (hrs)
        = time of steady state (also used for program end or outpu
 TSTD
 IMAGE 6: Physical Variables and Parameters
        = bed friction coefficient
 CF
 CS
        = surface stress coefficient
         = magnitude of wind speed
 W
 WPER = period of wind forcing
IMAGE 7: Tidal and Salinity Parameters
AMPL = amplitude of sine tide (m, if used)

MSL = elevation of MSL above MLLW (m)

PER = period of tides (in hours)

MHHW = magnitude of highest high tide (in ft, converted to m)

MLLW = magnitude of lowest low tide (in ft, converted to m)
```

```
MLHW = magnitude of lowest high tide (in ft, converted to m)
            = magnitude of highest low tide (in ft, converted to m)
     MHLW
     NIQ
            = number of grid points where fresh water inflows
     IMAGE 8.1, 8.2,...,8.NIQ : Freshwater Inflow Parameters
     (I,0)
                  = grid indices of main and secondary
                    channel intersections where I = CH(LJ)
     CH(J), CHE(J) = grid indices of cells where freshwater
                    flows are introduced
     N(J) = number of cells in subsidiary channels

FRESH(I,K) = rates of freshwater inflows (in MGD)

TFLD(I,K) = times of beginning of discharges (hrs)

DUR(I,K) = durations of discharge (hrs)
IMAGE 9: Width of Cells IM = 0 to IM , at MLLW
     WHL(I,K) = width of cells (in meters) at MLLW
     IMAGE 10: Width of cells IM = 0 to IM at MHHW
     WHH(I,K) = width of cells (in meters) at MHHW
     IMAGE 11: X-sec at Cells IM = 0 to IM , below MLLW
     XSECL(I,K) = x-sec at cell centers (in sq meters)
    IMAGE 12: X-sec at cells im = 0 to im, between MHHW & MLLW
    XSECH(I,K) = x-sec between MHHW and MLLW
    IMAGE 13: width of all the cells in secondary channels
               starting with cell [ch(j),1] ..... [ch(j),km(j)]
               at MLLW : j = number of secondary channel
    WHL(I,K) = width of cell at MLLW
    IMAGE 14: width of all the cells in secondary channels
               starting with cell [ch(j),1] ..... [ch(j),km(j)]
              at MHHW
    WHH(I,K) = width of cell at MHHW
```

```
IMAGE 15: X-SEC of secondary channel cells ch(j),1..ch(j), km(j)
               at MLLW
  XSECL(I,K) = x-sec 	ext{ of secondary cells at MLLW}
  IMAGE 16: X-SEC of secondary channel cells ch(j),1..ch(j), km(j)
               at MLLW
XSECL(I,K) = x-sec of secondary cells at MLLW
  DEFINITION OF PROGRAM VARIABLES:
  ARRAY VARIABLES
  i,k is cell designator index
 U(i,k) = previously calculated value of velocity
UN(i,k) = velocity currently being calculated
OZ(i,k) = previously calculated value of elevation
Z(i,k) = surface elevation currently being calculated
 Q(i,k) = freshwater discharge volume flow rates
H(i,k) = water depths referenced to swl datum
WHL(i,k) = width of cell at low water (0 ft)
WHH(i,k) = width of cell at high water (for coyote creek simulation the high water is at 7 ft)
 WH(i,k) = width at the water surface elevation in a cell
                   at time t
 XSECZ(i,k) = X-section in a cell at time t
 NOTE:
                  All variables in one dimensional arrays are used
                  locally within subroutines for calculating z, u,
                  and s. these arrays are used for temporary holding
                  areas for two dimensional array variables
 I,K is cell index indicating freshwater discharge
 IQ(I,K) = cell indices of freshwater inflow locations DUR(I,K) = duration of discharge
 FRESH(I,K) = freshwater discharge volume flow rates
TFLD(I,K) = time of discharge start
COUNTERS, SWITCHES, AND FLAGS
N = time step number currently working
```

```
= current time
            TT
                    = time in tidal cycle
                     = switch for printout
            SW1
            SWFI
                    = enable input of previous output file
                   = create output ASCII file
            SWFO
                     = select type of tide
            SWT
                     PROGRAM INITIALIZATION
 'Dimension arrays
DIM U#(60,20), UN#(60,20), Q(60,20)
DIM R(60,20), H(60,20), Z#(60,20), OZ#(60,20), WH(60,20)
DIM IQ(60,20), DUR(60,20), FRESH(60,20), TFLD(60,20)
DIM WHL(60,20), WHH(60,20), XSECL(60,20), XSECH(60,20), XSECZ(60,20)
DIM XU#(60), XUN#(60), XQ(60)
DIM XH(60), XZ#(60), XOZ#(60), XWH(60)
DIM IOUT(20), KOUT(20)
DIM LOWZ#(60,20), HIGHZ#(60,20), LOWU#(60,20), HIGHU#(60,20)
TM LOWZT(60,20), HIGHZT(60,20), LOWUT(60,20), HIGHUT(60,20)
Input data file name and open for input
CLS
input "What is name of control file: "; Controlfile$
open Controlfile$ for input as #7
                                        ' run.dat is a record of runs made
'open "run.dat" for input as #8
                         ' during a session
while not eof(7)
line input #7, datafile$
open datafile$ for input as #1
'Set constants, initial loop parameters, and I/O switches
PI = 3.14159
RAD = 57.2958
N=0: T=0: TT=0.0
                                   'switches for printout
input#1,SW1,SW2
input#1, outfile1$
                                   'output file name
                              'switches and names for I/O ASCII files
input#1,SWFI,FIN$,SWFO,FOUT$
                              'switches for tide type
input#1,SWT
                                   'switch for printout interval
 out#1,0PS
```

```
'Read Input variables
 input#1,TITLE1$,TITLE2$,TITLE3$
 input#1, DT, DX, IM, EDH, NM, NC, TOUT, TSTD
 input#1, CF, CS, W, WPER
 input#1, AMPL, msl, PER, MHHW, MLLW, MLHW, MHLW, NIQ
 IF SWT = 0 THEN
         TideRange = 2*AMPL
 ELSE
         TideRange = (MHHW-MLLW) *.3048
END IF
 188
ltid=NM-(89280/dt) 'last tide
FOR J = 1 TO NIQ
  input#1, CH(J), CHE(J), KM(J)
  I=ch(J):K=che(J)
  input#1, FRESH(I,K), TFLD(I,K), DUR(I,K)
  EXT J
     ADDED VELOCITY AND ELEVATION OUTPUT PLOT FILES
'DLK
input #1, SVF, VFILE$, SZF, ZFILE$, NPTS, FREQ
FOR NP = 1 TO NPTS
  INPUT#1, IOUT(NP), KOUT(NP)
NEXT NP
IF SVF = 1 THEN
        OPEN VFILE$ FOR OUTPUT AS #5
        FOR J = 1 TO NPTS
          PRINT #5, USING "###,"; IOUT(J);
          PRINT #5, USING "### "; KOUT(J);
        NEXT J
        PRINT #5,'
END IF
IF SZF = 1 THEN
OPEN ZFILE$ FOR OUTPUT AS #6
        FOR J = 1 TO NPTS
          PRINT #6, USING "###,"; IOUT(J);
          PRINT #6, USING "### "; KOUT(J);
        NEXT J
```

```
PRINT #6,
 D IF
 K = 0
 FOR I = 0 TO IM
      print "i = ", i, " k = ", k
      INPUT #1, WHL(I,K)
 NEXT
 K = 0
 FOR I = 0 TO IM
     INPUT #1, WHH(I,K)
 NEXT
     K = 0
 FOR I = 0 TO IM
   input #1, XSECL(I,K)
 NEXT I
    K = 0
 FOR I = 0 TO IM
   input #1, XSECH(I,K)
 NEXT I
 FOR J = 1 TO NIQ
     I = CH(J)
     FOR K = 1 TO KM(J)
       input #1, WHL(I,K)
     NEXT
NEXT
FOR J = 1 TO NIQ
     I = CH(J)
     FOR K = 1 TO KM(J)
     input #1, WHH(I,K)
    NEXT
NEXT
FOR J = 1 TO NIQ
    I = CH(J)
    FOR K = 1 TO KM(J)
       input #1, XSECL(I,K)
    NEXT
NEXT
FOR J = 1 TO NIQ
    I = CH(J)
    FOR K = 1 TO KM(J)
      input #1, XSECH(I,K)
    NEXT
\mathbf{L} X_{\mathrm{ta},\mathrm{re}}
```

```
ose #1
 'Scale and Initialize Variables
 if ops<1 or ops>im then ops=1
 TSTD = TSTD * 3600.
 TOUT = TOUT * 3600.
 PER = PER * 3600.
 FOR j = 1 to NIQ
     I = CH(J): K = CHE(J)
    DUR(I,K) = DUR(I,K)*3600.
    TFLD(I,K) = TFLD(I,K)*3600.
next j
k=0
FOR I = 0 TO IM
  U#(I,K) = 0. : UN#(I,K) = 0.
NEXT I
 R J = 1 TO NIQ
= I = CH(J)
    FOR K = 1 TO KM(J)
    U#(I,K) = 0: UN#(I,K) = 0
    NEXT: NEXT
TSXO = CS*W*ABS(W)
                                           ' wind stress
' Read Initial Values from Input File
IF SWFI = 0 THEN GOTO NOTIN:
PRINT
OPEN FIN$ FOR INPUT AS #2
INPUT#2,N,T,TT
K = 0
FOR I = 1 TO IM
 INPUT#2,OZ#(I,K)
NEXT I
```

```
RJ = 1 TO NIQ
 I = CH(J)
     FOR K = 1 TO KM(J)
     INPUT #2, OZ#(I,K)
     NEXT: NEXT
 K = 0
 FOR I = 1 TO IM
   INPUT#2, U#(I,K)
 NEXT I
 FOR J = 1 TO NIQ
     I = CH(J)
     FOR K = 1 TO KM(J)
     INPUT #2, U#(I,K)
    NEXT: NEXT
CLOSE #2
NOTIN:
open outfile1$ for output as #4
 'Do Initial Output (Title Page)
IF SW1 = 1 THEN GOSUB TITLEPAGE:
                                   'CHECK INITIAL INPUT
GOSUB INITCOND:
IF SW2 = 1 THEN GOSUB OUTPRINT:
IF SVF = 1 THEN GOSUB VELOUT:
IF SZF = 1 THEN GOSUB ZOUT:
                    LOOP FOR REPETATIVE TIME STEPPING
'open "monitor.fil" for output as #9
NEXTSTEP:
'close #9
'open "monitor.fil" for output as #9
'Increment step number and time
N=N+1
T=T+DT
TT = TT + DT
print n;t;tt
```

```
⊸∡urn on Wind
 IF N<WPER/4 THEN TSX=TSXO*SIN(2*PI*N/WPER) ELSE TSX=TSXO
 'Calculate Water Surface Elevations (ref:SWL) at N+1.5
 'Calculate tidal elevations - Z(0)=Z(1)
 1_______
 IF TT > PER THEN TT=TT-PER*(int(tt/per))
 IF SWT = 1 THEN GOTO SYNDITIDE:
Z#(1,0) = AMPL*SIN(2*PI*T/PER) + msl
                                                              'sine wave tide
GOTO GOTTIDE:
SYNDITIDE:
TH = TT/3600.
                                                   'synthetic diurnal tide
IF TH > 6.2 THEN GOTO CURVE2
  RNG = MHHW-MHLW
  Z\#(1,0) = (-RNG/2.*COS(TH*PI/6.2)+MHLW+RNG/2.)*.3048
'(MHLW=>MHHW)
  GOTO GOTTIDE:
CURVE2:
IF TH > 12.4 THEN GOTO CURVE3:
  RNG = MHHW-MLLW
  Z#(1,0) = (RNG/2.*COS((TH-6.2)*PI/6.2)+RNG/2.+MLLW)*.3048
'(MHHW=>MLLW)
  GOTO GOTTIDE:
CURVE3:
IF TH > 18.6 THEN GOTO CURVE4:
  RNG = MLHW-MLLW
  Z#(1,0) = (-RNG/2.*COS((TH-12.4)*PI/6.2)+RNG/2.+MLLW)*.3048
'(MLLW=>MLHW)
 GOTO GOTTIDE:
CURVE4:
RNG = MLHW-MHLW
Z_{\#}(1,0) = (RNG/2.*COS((TH-18.6)*PI/6.2)+RNG/2.+MHLW)*.3048
'(MLHW=>MHLW)
GOTTIDE:
'Driver for calculating z#,un#, and S#
```

```
gosub para0:
 gosub para1:
 gosub para2:
 goto push:
 PARA0:
k = 0
 FOR I = 0 to IM
    Interpolate between MHHW and MLLW
WH(I,K) = WHL(I,K) + (OZ#(I,K)*(WHH(I,K)-WHL(I,K))/TideRange)
XSECZ(I,K) = XSECL(I,K) + OZ\#(I,K) * XSECH(I,K) / TideRange
    For water levels below MLLW:
IF OZ\#(I,K) < O THEN
         WH(I,K) = WHL(I,K)
         XSECZ(I,K) = XSECL(I,K) + OZ\#(I,K)*WHL(I,K)
         IF XSECZ(I,K) < 0.1 THEN XSECZ(I,K) = 0.1
  DIF
\pi(I,K) = XSECZ(I,K)/WH(I,K)-oz#(i,k)
NEXT
FOR J = 1 TO NIQ
    I = CH(J)
          FOR K = 1 TO KM(J)
   Interpolate between MHHW and MLLW
         WH(I,K) = WHL(I,K) + OZ\#(I,K) * (WHH(I,K) - WHL(I,K)) / TideRange
         XSECZ(I,K) = XSECL(I,K) + OZ\#(I,K) * XSECH(I,K) / TideRange
   For water levels below MLLW:
        IF OZ\#(I,K) < O THEN
                 WH(I,K) = WHL(I,K)
                 XSECZ(I,K) = XSECL(I,K) + OZ#(I,K)*WHL(I,K)
                 IF XSECZ(I,K) < 0.1 THEN XSECZ(I,K) = 0.1
        END IF
         H(I,K) = XSECZ(I,K)/WH(I,K)-oz\#(i,k)
    NEXT
NEXT
'Turn on freshwater flows
FOR J = 1 TO NIQ
I = CH(J)
```

```
K = CHE(J)
  Q(I,K) = 0.
   IF T<=TFLD(I,K) THEN GOTO NOFLOOD:
   IF T>(TFLD(I,K)+DUR(I,K)) THEN GOTO NOFLOOD:
   Q(I,K) = FRESH(I,K) *.0438/WH(I,K)/DX
   NOFLOOD:
 NEXT
 'end of PARA0:
 RETURN
 PARA1:
 'Calculate surface elevations for main channel - Z(i,0)
 J = 1
 FOR I = 2 TO IM-1
  HIP = (H(I+1,0)+H(I,0)+OZ#(I+1,0)+OZ#(I,0))/2.
  WIP = (WH(I,0)+WH(I+1,0))/2
  HIM = (H(I,0)+H(I-1,0)+OZ#(I,0)+OZ#(I-1,0))/2.
  WIM = (WH(I,0)+WH(I-1,0))/2.
Z\#(I,0) = EDH*OZ\#(I,0)+(OZ\#(I+1,0)+OZ\#(I-1,0))*(1-EDH)/2.
  Z\#(I,0) = Z\#(I,0)+DT*(Q(I,0)-(WIP*HIP*U\#(I+1,0)-WIM*HIM*U\#(I,0))/(WH(I,0)*D
))
' Calculate surface elevations for main channel junctions - Z(ch(j),0)
  IF I <> CH(J) THEN GOTO NOJUNCTION:
    HIS = (H(I,0)+H(I,1)+OZ#(I,0)+OZ#(I,1))/2.
    WIS = (DX+WH(I,1))/2
    z#(I,0) = z#(I,0) - dt*(wis*his*u#(I,1))/(wh(I,0)*dx)
    J=J+1
  NOJUNCTION:
NEXT I
'Set end cell elevation - Z(IM)=Z(IM,0)
Z\#(IM,0) = Z\#(IM-1,0)
'Calculate surface elevations for branch channels - Z(CH(J),k)
FOR J = 1 TO NIQ
```

```
FOR K = 1 TO KM(J)-1
       I = CH(J)
       HIP = (H(I,K+1)+H(I,K)+OZ\#(I,K+1)+OZ\#(I,K))/2.
       WIP = (WH(I,K)+WH(I,K+1))/2
      HIM = (H(I,K)+H(I,K-1)+OZ#(I,K)+OZ#(I,K-1))/2.
      WIM = (WH(I,K)+WH(I,K-1))/2.
      ZA\# = EDH*OZ\#(I,K)+(OZ\#(I,K+1)+OZ\#(I,K-1))*(1-EDH)/2.
      ZB\# = DT*(Q(I,K)-(WIP*HIP*U\#(I,K+1)-WIM*HIM*U\#(I,K))/(WH(I,K)*DX))
      Z\#(I,K) = ZA\# + ZB\#
    NEXT K
 NEXT J
 'Set end cell elevations for branch channels - Z(J,KM(J))
 FOR J = 1 TO NIQ
   Z\#(CH(J),KM(J)) = Z\#(CH(J),KM(J)-1)
NEXT J
RETURN
 'end of PARA1:
  RA2:
'Calculate velocities for main channel - UN(I,0)
FOR I = 2 TO IM-1
'if t > 59372 then
   print #9, "T = "; t
                 i = ";i; " Hi = ";H(i,0);" Hi -1 = ";H(i-1,0)
   print #9, "
  print #9, "
                     zi = "; z#(i,0); "zi-1 = "; z#(i-1,0)
'end if
  HM = (H(I,0)+H(I-1,0)+Z#(I,0)+Z#(I-1,0))/2.
'if t > 41510 then print #9, "T = ";t, "i = ";i, "u#(i,0) = ";u#(i,0)
  TBX = CF*U#(I,0)*ABS(U#(I,0))
  DELZ\# = Z\#(I,0)-Z\#(I-1,0)
  UN\#(I,0) = U\#(I,0)*EDH+(U\#(I+1,0)+U\#(I-1,0))*(1-EDH)/2.
  UN\#(I,0) = UN\#(I,0)-DT*((U\#(I+1,0)+U\#(I,0))^2-(U\#(I,0)+U\#(I-1,0))^2)/8./DX
  UN\#(I,0) = UN\#(I,0) - DT*9.81*DELZ\#/DX
  UN\#(I,0) = UN\#(I,0) + DT*(TSX-TBX)/HM
NEXT I
'Set mouth velocity - UN(1,0)
UN\#(1,0) = UN\#(2,0) + (Z\#(1,0) - OZ\#(1,0)) *DX/(DT*(H(1,0) + Z\#(1,0)))
1
```

```
'alculate velocities for branch channels - UN(CH(I),K)
 FOR J = 1 TO NIO
   I = CH(J)
 ' Set mouth velocity at branch channel - UN(J,1)
   K=1
          HM = (H(I,K)+H(I,K-1)+Z\#(I,K)+Z\#(I,K-1))/2.
          if t > 2900 then
                   print #9, "t = "; t
                   print #9, "i = "; " j = "; j; " u#(i,k) = "; u#(i,k)
          end if
     TBX = CF*U\#(I,K)*ABS(U\#(I,K))
     DELZ\# = Z\#(I,K)-Z\#(I,K-1)
     UN\#(I,K) = U\#(I,K)*EDH+(U\#(I,K+1)+U\#(I,K-1))*(1-EDH)/2.
     UN\#(I,K) = UN\#(I,K)-DT*((U\#(I,K+1)+U\#(I,K))^2-(U\#(I,K)+0)^2)/8./DX
     UN#(I,K) = UN#(I,K) - DT*9.81*DELZ#/DX
     UN\#(I,K) = UN\#(I,K) + DT*(TSX-TBX)/HM
  FOR K = 2 TO KM(J)-1
     HM = (H(I,K)+H(I,K-1)+Z\#(I,K)+Z\#(I,K-1))/2.
     TBX = CF*U#(I,K)*ABS(U#(I,K))
     DELZ# = Z#(I,K)-Z#(I,K-1)
    UN\#(I,K) = U\#(I,K)*EDH+(U\#(I,K+1)+U\#(I,K-1))*(1-EDH)/2.
    UN\#(I,K) = UN\#(I,K)-DT*((U\#(I,K+1)+U\#(I,K))^2-(U\#(I,K)+U\#(I,K-1))^2)/8./D
    UN#(I,K) = UN#(I,K) - DT*9.81*DELZ#/DX
    UN\#(I,K) = UN\#(I,K) + DT*(TSX-TBX)/HM
  NEXT K
  Set mouth velocity at branch channel - UN(J,1)
   UN\#(I,1) = UN\#(I,2) + (Z\#(I,1) - OZ\#(I,1)) *DX/(DT*(H(I,1) + Z\#(I,1)))
NEXT J
RETURN
'end of PARA2:
PUSH:
'Push U, Z, and S values into time step N arrays
FOR I = 0 TO IM
  if N>=LTID then
```

```
if TT=dt THEN
     LOWZ\#(I,K)=Z\#(I,K)
    LOWU#(I,K)=UN#(I,K)
     LOWZT(I,K)=T/3600.
     LOWUT(I, K)=T/3600.
   end if
   SELECT CASE Z#(I,K)
  CASE < LOWZ#(I,K)
     LOWZ\#(I,K) = Z\#(I,K)
     LOWZT(I,K) = T/3600.
  CASE > HIGHZ#(I,K)
     HIGHZ\#(I,K) = Z\#(I,K)
     HIGHZT(I,K) = T/3600.
  END SELECT
  SELECT CASE UN#(I,K)
  CASE < LOWU#(I,K)
     LOWU#(I,K) = UN#(I,K)
    LOWUT(I,K) = T/3600.
  CASE > HIGHU#(I,K)
    HIGHU\#(I,K) = UN\#(I,K)
    HIGHUT(I,K) = T/3600.
  END SELECT
  end if
  IF I = 0 THEN GOTO SAL:
  U\#(I,K)=UN\#(I,K)
  \mathcal{I}(\mathbf{I},\mathbf{K}) = \mathbf{Z}\#(\mathbf{I},\mathbf{K})
SAL:
NEXT I
FOR J = 1 TO NIQ
    I = CH(J)
    FOR K = 1 TO KM(J)
1 88
  if N>≃LTID then
  if TT=dt then
  LOWZ\#(I,K)=Z\#(I,K)
  LOWU#(I,K)=UN#(I,K)
  LOWZT(I,K)=T/3600.
 LOWUT(I,K)=T/3600.
  end if
 SELECT CASE Z#(I,K)
 CASE < LOWZ#(I,K)
    LOWZ\#(I,K) = Z\#(I,K)
    LOWZT(I,K) = T/3600.
 CASE > HIGHZ#(I,K)
   HIGHZ\#(I,K) = Z\#(I,K)
   HIGHZT(I,K) = T/3600.
 END SELECT
 SELECT CASE UN#(I,K)
 CASE < LOWU#(I,K)
```

```
LOWU\#(I,K) = UN\#(I,K)
     LOWUT(I,K) = T/3600.
   CASE > HIGHU#(I,K)
     HIGHU\#(I,K) = UN\#(I,K)
     HIGHUT(I,K) = T/3600.
   END SELECT
   end if
    U\#(I,K) = UN\#(I,K)
    OZ\#(I,K) = Z\#(I,K)
    NEXT
 NEXT
 'end of PUSH:
 CHECK:
 'Check NC to Repeat Loop at t+dt or Calculate Kinetic Energy/Check NM
 'Check step number - do next step, output, or check KE
1------
IF SVF = 1 THEN GOSUB VELOUT:
TF SZF = 1 THEN GOSUB ZOUT:
   N = NM THEN GOSUB OUTFILE:
T n = nm then goto KICKOUT:
IF T = TSTD THEN GOSUB OUTFILE:
IF T < TOUT THEN GOTO NEXTSTEP:
IF N/NC <> INT(N/NC) THEN GOTO NEXTSTEP:
'Calculate total kinetic energy
1______
KK=EK
EK=0
K = 0
FOR I = 1 TO IM-1
  EK = EK+(U#(I,K))^2*H(I,K)
NEXT I
FOR J = 1 TO NIQ
   I = CH(J)
   FOR K = 1 TO KM(J)
   EK = EK + (U#(I,K)^2*H(I,K))
   NEXT
NEXT
'Do output and check for end
```

```
`SUB OUTFILE:
 IF N<NM THEN GOTO NEXTSTEP:
 KICKOUT:
 close #4
 close #5
 close #6
 'print #8, "MODEL: "; datafile$; "; run complete on "; date$; " at "; time$
wend
close #7
 'close #8
END
                    OUTPUT ROUTINES
TITLEPAGE:
'PAGE 1 - SW1=1
  INT#4, TITLE1$ :print#4,
FRINT#4, TITLE2$
PRINT#4, TITLE3$
PRINT#4, :print#4,
PRINT#4, "Time Step (DT)
PRINT#4, "Space Step (DX)
                                      =";DT
                                      =";DX
PRINT#4, "Time Step ehd
                                      =";:PRINT#4, USING " #.##";EDH
                                      =";:PRINT#4, USING " #.###";CF
PRINT#4, "Bed Friction (CF)
PRINT#4, "Wind Velocity
                                      =";W
PRINT#4, "Wind Period
                                      =";WPER
PRINT#4, "Surface Friction (CS)
                                      =";CS
PRINT#4, "Tide Amplitude
                                      =";AMPL
PRINT#4, "Tide Period
                                      =";:PRINT#4, USING " ###.# ";PER/3600.
FOR J = 1 TO NIQ
    I = CH(J): K = CHE(J)
 PRINT#4, "Discharge Grid Index =";:PRINT#4, USING " ### ";CH(J),CHE(
                                        =";:PRINT#4, USING " ##.# ";TFLD(I,K)
 PRINT#4, "Discharge Start Time
3600.
 PRINT#4, "Discharge Rate
PRINT#4, "Discharge Duration
                                     - =";:PRINT#4, USING " ###.# ";fresh(i,k
                                        =";:PRINT#4, USING " ###.#";DUR(I,K)/3
```

```
^0.
   PRINT#4,
 NEXT J
 PRINT#4,
print#4, "----"
print#4, "Run Date was: ";date$
print#4, "Run Time was: ";time$
print#4, "Data File Used was: ";datar
print#4, "Input Start-up File was: ";fin$
                                     ";datafile$
print#4, "Output File was:
                                    ";fout$
PRINT#4, CHR$(12)
 18
RETURN
'Write elevation, velocity, and salinty fields to ASCII files
OUTFILE:
IF SWFO = 0 THEN GOTO OUTPRINT:
IF SWFO=1 AND n<nm THEN GOTO OUTPRINT:
 EN FOUTS FOR OUTPUT AS #3
PRINT#3,N,T,TT
K = 0
FOR I = 1 TO IM
  PRINT#3,OZ#(I,K)
NEXT I
FOR J = 1 TO NIQ
    I = CH(J)
    FOR K = 1 TO KM(J)
    PRINT #3, OZ#(I,K)
    NEXT: NEXT
K = 0
FOR I = 1 TO IM
 PRINT#3,U#(I,K)
NEXT I
FOR J = 1 TO NIQ
   I = CH(J)
   FOR K = 1 TO KM(J)
   PRINT #3, U#(I,K)
   NEXT: NEXT
```

```
JSE #3
 'Printout elevation, velocity, and salinty fields
 OUTPRINT:
 IF SW2 = 0 THEN GOTO NOPRINT:
if cnt <> 0 then goto skiphead:
pn = pn+1
print#4, title1$:print#4, title2$:print#4, title3$
print#4, "Page";pn
print#4,:print#4,
SKIPHEAD:
 'Printout header for output step
print#4, "Step=";:print#4, using "#####";N;
           Time=";:print#4, using "####.## ";T/3600.;
print#4, "
print#4, " Tide Time=";:print#4, using "###.## ";TT/3600.;
print#4, "
           KE=";:print#4, using "####.#### ";EK
  INT#4,
'Printout elevation, velocity, and salinity
PRINT #4, "MAIN CHANNEL"
PRINT#4, "C ";
FOR I=1 TO IM STEP OPS:PRINT#4, USING " ### ";I ;:NEXT I:PRINT#4,
PRINT#4, "Z ";
FOR I=1 TO IM STEP OPS:PRINT#4, USING " ###.##";OZ#(I,K);:NEXT I:PRINT#4,
FOR I=1 TO IM STEP OPS:PRINT#4, USING " ###.###";U#(I,K);:NEXT I:PRINT#4,
PRINT#4,:PRINT#4,
PRINT #4, "SECONDARY CHANNELS":print#4,
FOR J = 1 TO NIQ
    I = CH(J)
    print#4, "Channel Entering at :";ch(j);"0":PRINT#4,"C ";
FOR K = 1 TO KM(J) STEP OPS:PRINT#4, USING "### ";K ;:NEXT K:PRINT#4,
PRINT#4, "Z ";
FOR K=1 TO KM(J) STEP OPS:PRINT#4, USING " ###.###";OZ#(I,K);:NEXT K:PRINT#4,
PRINT#4, "U ";
FOR K=1 TO KM(J) STEP OPS:PRINT#4, USING " ###.##";U#(I,K);:NEXT K:PRINT#4,
PRINT#4,:PRINT#4,
NEXT
```

```
nt = 0
  _i cnt=0 then print#4,chr$(12)
 if n=nm then
 188
 PRINT#4, "
                   MINIMUM AND MAXIMUM Z, U, S OF THE SIMULATION"
 PRINT#4, "
                         ELEVATION VELOCITY
                                                            SALINITY"
 PRINT#4, "
                                                                  MAX"
                               MAX
                                         MIN
                                                MAX
                                                           MIN
               CELL
                        MIN
 PRINT#4, "
 K=0
 FOR I=0 TO IM
 PRINT#4, " ";
PRINT#4, USING "##";I;
PRINT#4, ",";
PRINT#4, USING "##";K;
PRINT#4, USING " ####.# ";LOWZ#(I,K),HIGHZ#(I,K),LOWU#(I,K),HIGHU#(I,K)
NEXT
PRINT#4,
PRINT#4, "
              TIME OF MINIMUM AND MAXIMUM Z, U, S OF THE SIMULATION"
PRINT#4, "
                       ELEVATION
                                        VELOCITY
                                                          SALINITY"
PRINT#4, "
                                                                 MAX"
                                       MIN
                                               MAX
                                                         MIN
             CELL
                      MIN
                              MAX
PRINT#4, "
K=0
FOR I=0 TO IM
PRINT#4, " ";
PRINT#4, USING "##";I;
PRINT#4, ",";
  !INT#4, USING "##";K;
PRINT#4, USING " ###.## ";LOWZT(I,K),HIGHZT(I,K);
PRINT#4, USING " ###.## ";LOWUT(I,K),HIGHUT(I,K)
NEXT
FOR J = 1 TO NIQ
  I = CH(J)
                  MINIMUM AND MAXIMUM Z, U, S OF THE SIMULATION"
PRINT#4, "
PRINT#4, "
                                        VELOCITY
                                                          SALINITY"
                      ELEVATION
                                                                  MAX"
PRINT#4, "
                       MIN
                                        MIN
                                               MAX
                                                          MIN
               CELL
                              MAX
                                                                    **
PRINT#4, "
FOR K = 1 TO \overline{KM}(J)
PRINT#4, " ";
PRINT#4, USING "##";I;
PRINT#4, ",";
PRINT#4, USING "##";K;
PRINT#4, USING " ####.# ";LOWZ#(I,K),HIGHZ#(I,K),LOWU#(I,K),HIGHU#(I,K)
NEXT
PRINT#4,
             TIME OF MINIMUM AND MAXIMUM Z, U, S OF THE SIMULATION"
PRINT#4, "
PRINT#4, "
                                           VELOCITY "
                       ELEVATION
PRINT#4, "
                      MIN
                              MAX
                                         MIN
                                                 MAX"
            CELL
PRINT#4, "
FOR K = 1 TO \overline{KM}(J)
PRINT#4, "
```

```
"RINT#4, USING "##";I;
  INT#4, ",";
 PRINT#4, USING "##";K;
 PRINT#4, USING " ###.## ";LOWZT(I,K),HIGHZT(I,K);
 PRINT#4, USING " ###.## ";LOWUT(I,K),HIGHUT(I,K)
 NEXT
 PRINT#4, CHR$(12)
 NEXT
 PRINT#4, CHR$(12)
 end if
 18
NOPRINT:
RETURN
VELOUT:
    WRITE VELOCITY DATA FOR SELECTED CELLS TO OUTPUT FILE
IF N/FREQ <> INT(N/FREQ) THEN RETURN
PRINT #5, T;
FOR J=1 TO NPTS
        PRINT #5, U#(IOUT(J), KOUT(J));
NEXT J
PRINT #5,
  TURN
ZOUT:
    WRITE ELEVATION DATA FOR SELECTED CELLS TO OUTPUT FILE
IF N/FREQ <> INT(N/FREQ) THEN RETURN
PRINT #6, T;
FOR J = 1 TO NPTS
        PRINT #6, OZ#(IOUT(J), KOUT(J));
NEXT J
PRINT #6,
RETURN
'CHECK INITIAL MODEL DEFINITION
!________
INITCOND:
PRINT #4, " I", " K", " WHL", " WHH", " XSECL", " XSECH"
PRINT #4,
K = 0
FOR I = 0 TO IM
```

```
PRINT #4, I,K,WHL(I,K), WHH(I,K), XSECL(I,K), XSECH(I,K)

EXT I

PRINT #4,

FOR J = 1 TO NIQ

I = CH(J)

FOR K = 1 TO CHE(J)

PRINT #4, I,K,WHL(I,K), WHH(I,K), XSECL(I,K), XSECH(I,K)

NEXT K

PRINT #4,

NEXT J

RETURN
```

Preliminary Results from Seal Beach Wildlife Refuge Study

Background
ROD
Species in NWR
SI

Approach
Phased
Phase I sampling
Components
watershed characterization
Storet data and map
physical oceanography
map with pre and post POLB erosion/sedimentation patterns
sediment and biota sampling
list of chemical of concern
map??

Results

need for overheads:

watershed map

sampling map for sediment and biota map showing sediment transport \checkmark

What are chemical from sets 8, 44 etc

Appendix C EVALUATION OF SEAL BEACH NATIONL WILDLIFE REFUGE SEDIMENT CHEMISTRY DATA

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Appendix C

EVALUATION OF SEAL BEACH NATIONAL WILDLIFE REFUGE

SEDIMENT CHEMISTRY DATA

Prepared by Don Heinle

INTRODUCTION

Sediment samples were collected from Seal Beach National Wildlife Refuge (NWR) on 24

through 26 October 1992. The purpose of the sampling was to characterize possible con-

tamination in the NWR sediments as described in the Final Work Plan (Navy 1992) as part

of the Wildlife Refuge Study, which was intended to assess the impacts of operations of

Naval Weapons Station (NWS) Seal Beach on the NWR.

Methods

To evaluate existing conditions in the NWR, sediment samples were collected over a grid of

22 sample locations within the NWR, and one sample location at the mouth of Huntington

Harbour, just outside of the NWR (see Figure 2, Appendix D). Sample locations were

selected to provide information on the distribution of contaminants in the NWR by including

locations in major channels, as well as near previously identified contaminant sites.

C-1

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Sediment samples were collected in October 1992 in tidal channels immediately adjacent to

the sample location identified for biota collection (see Appendix D) on the tidal flat.

Samples were collected with a Ponar dredge or shovel from an inflatable boat. At the time

of collection, stratification and texture were noted.

At each sample location, a minimum of 200 grams of sediment was collected in a whirl-

pak® container for total metals analysis, a minimum of 400 grams was collected in an I-

Chem bottle for organics analysis, and a minimum of 100 grams was collected in separate

I-Chem bottles for Total Organic Carbon analysis and acid volatile sulfide analysis.

From among the 23 samples, two split samples were obtained for each analysis. Two field

duplicates for each analysis were obtained from sample locations not used for split

samples. Two samples with sufficient volumes of sediment were designated for use for

matrix-spike duplicates (MSDs). Samples were initially stored on ice, then frozen awaiting

permission from US Fish and Wildlife Service (USFWS) to ship them to their contract

laboratory (see Deviations from Work Plan below).

Analyses were conducted by Geochemical and Environmental Research Group (GERG), a

contract laboratory of the USFWS, following the National Oceanic and Atmospheric

Administration (NOAA) status and trends methods described in Appendix B of the Final

Work Plan (Navy 1992). For organics analysis, the samples were extracted and cleaned up

before analysis by gas chromatography/mass spectrometry (GC/MS). Target detection

C-2

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

limits were 5 nanograms per gram (ng/g) (or 0.005 milligrams per kilograms [mg/kg]) for

individual Polynuclear Aromatic Hydrocarbons (PAHs) and 2 ng/g (or 0.002 mg/kg) for

individual pesticides or polychlorinated biphenyls (PCBs) when levels of contamination were

low; in samples with high levels of contamination the target detection limits were 60 times

those values. Most metals were analyzed by inductively coupled plasma emission spec-

troscopy following sample digestion. However, lead was analyzed by graphite furnace

atomic absorption spectroscopy (AA) and mercury by cold vapor reduction AA. Target

detection limits were as follows: 4 mg/kg lead; 3 mg/kg silver; 1 mg/kg barium; 0.6 mg/kg

copper; 0.5 mg/kg arsenic, chromium, nickel, and selenium; 0.2 mg/kg zinc; and 0.1 mg/kg

cadmium and mercury.

Quality assurance/quality control (QA/QC) for the chemical analyses was provided by the

USFWS in accordance with that agency's existing contract with GERG. Method blanks

were run with every 20 samples or with every sample set, whichever was more frequent.

Blank levels were acceptable if they were no more than 3 times the method detection limit

(MDL). Matrix spike/matrix spike duplicate (MS/MSD) samples were run at the same

frequency as method blanks with the spiking level between 3 and 10 times the MDL.

Surrogate materials were added (spiked) to each sample (including QC samples) at levels

between 3 and 10 times the MDL. In addition, standard reference materials were analyzed

at a frequency of one per sample batch (or 20 samples). Criteria for acceptance of

analytical results are discussed in Appendix B of the Final Work Plan (Navy, 1992).

C-3

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

Analyses were evaluated based on a 1993 draft report titled "Criteria to Rank Toxic Hot

Spots in Enclosed Bays and Estuaries of California," provided by The State of California,

State Water Resources Control Board, Division of Water Quality. That report includes a

table of sediment screening levels developed by the NOAA (Long and Morgan, 1990) and

by the State of Florida (1993) (reproduced as Table 1). The concentrations of contaminants

found at the NWR are compared with the concentrations in Table 1 to provide perspective

on the magnitude of contamination at the NWR. In addition to the values in Table 1, metal

results from the NWR are also compared with a list of regional background concentrations

compiled from several sources.

Samples were stored on ice after collection, but problems in coordination with the USFWS

caused delays in shipping to the laboratories. When it became apparent that holding times

for unfrozen samples would be exceeded, the samples for sediment chemistry were frozen

and held in that condition until after delivery to the laboratories.

Data Evaluation

Data quality objectives for accuracy, precision, and completeness are described and

summarized in Tables 7-2 and 7-3 in the Final Work Plan. The completeness objective of

90 percent was achieved. Accuracy and precision objectives were met in all instances

where analyte concentrations exceeded detection limits by factors of two or more. When

analyte concentrations were near detection limits, accuracy as measured by MSs and

C-4

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 1						
Comparison of Sediment Screening Levels Developed by NOAA (Long and						
Morgan, 1990) and the State of Florida (1992) (from State of California, 1993)						

morgan, 1990) and the State of Florida (1992) (from State of California, 1993)						
Substance	NOEL ²	ERL ³	PEL ⁴	ERM ⁵		
Organics in ug/kg or ppb						
Total PCBs	25	50	270	380		
Acenaphthene	22	150	450	650		
Anthracene	85	85	800	960		
Fluorene 2-methyl naphthalene Naphthalene	18 130	35 65 340	460 1,100	640 670 2,100		
Phenanthrene Total LMW-PAHs	140 250	225	1,200 2,400	1,380		
Benz(a)anthracene	160	230	1,300	1,600		
Benao(a)pyrene	220	400	1,700	2,500		
Chrysene	220	400	1,700	2,800		
Dibenzo(a,h)anthracene	31	60	320	260		
Fluoranthene	380	600	3,200	3,600		
Pyrene	290	350	1,900	2,200		
Total HMW-PAHs Total PAHs	875 2,900	4,000	8,500 28,000	35,000		
p,p'-DDE	1.7	2	130	15		
Total DDT	4.5	3	270	350		
Metals in mg/kg or ppm						
Arsenic	8	33	64	85		
Cadmium	1	5	7.5	9		
Chromium	33	80	290	145		
Copper	28	70	170	390		
Lead	21	35	160	110		
Mercury	0.15	0.15	1.4	1.3		
Nickel	15	30	50	50		
Silver	0.5	2.5	2.5	2.2		
Zinc	68	300	300	270		

Values are for bulk sediment chemistry on a dry weight basis.

NOEL is defined as the sediment concentration below which adverse effects are not likely to occur. The value is derived by taking the geometric mean of 15th percentile of the effects database and the 50th percentile of the no-effects database and dividing by a safety factor of 2.

The ER-L is analogous to the NOEL. It is the concentration below which adverse effects are seldom

The ER-L is analogous to the NOEL. It is the concentration below which adverse effects are seldom expected. It is developed by taking the 10th percentile of the ranked adverse effects data in the Long and Morgan database.

Morgan database.

⁴PEL is that concentration above which adverse biological effects are likely to occur. It is developed by taking the geometric mean of the 50th percentile value of the effects database and the 85th percentile value of the no-effects database.

⁵The ER-M is analogous to the PEL. It is that concentration above which adverse effects are likely. It is developed by taking the 50th percentile of the ranked adverse effects data in the Long and Morgan database.

blank page

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

precision as measured by relative percent difference (RPD) of duplicate analysis were

sometimes outside the objectives listed in Tables 7-2 and 7-3 of the work plan.

MS recoveries were high (never low) for most PAHs in two of three spiked samples. That

occurred when the MS amount was similar to the background amount (which for all three

MS samples was near or below detection limits). Results for PAH at concentrations near

the detection limits are biased high.

MS limits (targets are average for all compounds) were barely exceeded for one pesticide.

oxychlordane, in one of the three spiked samples, indicating that the pesticide data are not

biased.

Precision, as measured by RPD of duplicate samples, was also adversely affected by the

fact that analyte concentrations were near or below detection limits. However, for most

compounds, even though the analyte concentrations were less than 2 times the detection

limits, the target RPD of less than 40 percent for concentrations of 2 to 10 times detection

limits was met. The only compounds with RPD greater than 40 percent were total PCBs,

benzo(b)fluoranthene, chrysene, and 4,4¹ DDE.

Precision, accuracy, and completeness objectives were not set for metals, but analysis of

laboratory duplicates resulted in RPDs of about 10 percent or less.

C-7

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

All data are considered usable for the purpose of evaluating the possible contaminants at

the NWR, but the high bias of the PAH data should be considered.

Results

Concentrations of arsenic, chromium, copper, lead, nickel, silver, and zinc in some samples

exceeded the no-observed effects levels (NOEL) (State of California, 1993) (Table 1). Silver

barely exceeded the NOEL of 0.5 mg/kg in one sample, a field duplicate at Sample

Location E-3. Some concentrations of lead, nickel, and zinc also exceeded the effects

range low (ERL) of NOAA (Table 1). Exceedances of the ERL were most common for zinc

although the highest concentration of zinc observed (210 mg/kg) was only 3 times the

NOEL and less than 2 times the ERL. Similarly, the highest concentrations of lead and

nickel were about 3 times the NOEL.

The highest concentrations of arsenic, chromium, and copper were about 2 times the

NOEL, and in many samples the concentrations of those metals barely exceeded the NOEL.

Note that a safety factor of two was applied in deriving the NOELs (Table 1).

Concentrations of metals, acid volatile sulfide, and total organic carbon (TOC) observed in

sediment from Seal Beach NWR are shown in Table 2. Aluminum, iron, and manganese are

not contaminants of concern. They are included in Table 2 because they are useful for

interpreting the data on other metals with regard to whether concentrations observed repre-

sent contamination or natural (geologic) background. Background concentrations for

C-8

C-9

Table 2

Concentrations of Metals and Sulfide (mg/kg dry weight) and Total Organic Carbon (TOC, in percent)

in Sediments from Seal Beach NWR

Station	Sample													
Name	Name	Aluminum	Arsenic	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Nickel	Silver	Zinc	Sulfide	TOC
A1	1SB	29,200	9.50 a	0.200 U	58.0 a	67.1 a	48,600	38.4 b	681	48.9 b	0.350 U	172 b	50.4	2.36
B1	2SB	23,900	11.0 a	0.450	47.7 a	54.2 a	39,600	52.5 b	464	37.4 b	0.350 U	210 b	728	1.87
B2	3SB	8,930	4.50	0.200 U	16.2	17.1	19,200	26.0 a	196	13.2	0.350 U	73.4 a	322	0.710
C1	4SB	11,000	6.30	0.200 U	21.8	19.4	26,500	15.1	328	17.4 a	0.350 U	77.1 a	34.0	0.380
C2	24SB	18,400	11.9 a	0.250	36.3 a	38.8 a	39,000	30.9 a	476	30.4 b	0.350 U	152 b	60.3	1.29
C2	5SB	21,000	11.0 a	0.240	38.8 a	39.8 a	39,700	31.2 a	546	34.5 b	0.350 U	148 b	81.4	0.750
C3	6SB	23,900	7.30	0.200 U	45.3 a	52.4 a	45,700	32.6 a	534	33.0 b	0.350 U	197 b	1,950	1.95
C4	7SB	22,200	8.00	0.210	37.8 a	44.5 a	38,900	31.1 a	543	30.5 b	0.350 U	168 b	1,050	1.14
D1	8SB	15,700	6.70	0.200 U	24.1	26.2	27,200	20.6	365	19.4 a	0.350 U	102 a	78.5	0.590
D2	9SB	24,700	14.4 a	0.200 U	45.6 a	41.1 a	36,100	23.5 a	502	32.1 b	0.350 U	156 b	143	1.37
D3	10SB	16,700	12.5 a	0.200 U	36.2 a	36.7 a	38,700	32.1 a	528	28.3 a	0.350 U	133 b	175	1.55
E1	11SB	11,800	6.05	0.200 U	27.6	30.4 a	26,300	24.6 a	319	20.7 a	0.350 U	112 a	636	0.890
E2	12SB	21,000	11.2 a	0.200 U	40.1 a	33.3 a	33,500	23.6 a	464	28.0 a	0.350 U	130 b	420	0.590
E3	13SB	14,100	7.40	0.200 U	30.7	36.9 a	27,600	28.3 a	368	22.6 a	0.350 U	170 b	275	1.00
E3	29SB	21,300	6.50	0.200 U	30.4	36.8 a	29,500	26.9 a	389	21.5 a	0.740 a	144 b	201	1.17
E4	14SB	18,500	17.5 a	0.200 U	44.8 a	49.6 a	45,500	28.0 a	527	35.7 b	0.350 U	148 b		3.01
E4	26SB	23,600	13.7 a	0.200 U	41.6 a	49.8 a	47,000	25.7 a	496	31.7 b	0.350 U	158 b	77.4	2.41
F1	15SB	9,300	5.20	0.200 U	19.2	18.6	17,800	19.7	235	14.5	0.350 U	72.7 a	188	0.580
F1	25SB	10,700	5.10	0.200 U	17.7	16.9	19,800	17.7	234	12.2	0.350 U	73.1 a	82.6	1.05
F2	16SB	15,000	6.40	0.200 U	32.3	35.1 a	27,300	26.4 a	369	23.4 a	0.350 U	131 b	714	1.05
F2	28SB	17,600	6.00	0.200 U	29.2	33.8 a	29,700	24.9 a	364	20.7 a	0.350 U	140 b		1.02
F3	17SB	10,300	5.50	0.200 U	21.5	19.3	16,700	20.6	240	14.5	0.350 U	73.4 a	399	0.720
F4	18SB	15,700	8.20 a	0.200 U	35.7 a	36.4 a	29,100	26.2 a	382	25.5 a	0.350 U	120 a	456	1.02
F5	19SB	14,400	5.60	0.200 U	28.7	22.3	21,500	19.7	309	18.7 a	0.350 U	80.9 a	197	0.270
F5	27SB	15,400	4.30	0.200 U	23.5	22.7	28,000	20.7	370	16.7 a	0.350 U	99.0 a	204	0.230
G1	20SB	13,800	11.2 a	0.200 U	31.2	28.5 a	29,200	16.3	361	25.0 a	0.350 U	88.3 a	30.1	1.94
G2	21SB	7,360	4.60	0.200 U	16.1	19.7	13,700	19.9	187	12.3	0.350 U	67.3	83.2	0.630
G3	22SB	15,400	5.70	0.200 U	34.0 a	35.3 a	29,600	25.0 a	399	24.9 a	0.350 U	135 b	657	0.660
H1	23SB	6,920	3.00	0.200 U	14.1	11.6	11,300	17.4	168	10.3	0.350 U	48.3	85.9	0.170

a Exceeds the NOEL sediment screening standard

b Exceeds the ERL sediment screening standard

J undetected. Value equals detection limit.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

metals in the Southern California Bight, obtained or derived from several sources, are

shown in Table 3. These are reasonable geologic background values. Note that for

arsenic and nickel, the regional background values are higher than the NOELs (Table 1)

and very similar to the concentrations at the NWR that exceeded the NOELs (Table 2).

Given the small range of concentrations of the metals, gradients in concentrations were not

apparent. In addition, metal concentrations may be related to sediment grain size and TOC,

being lower in sandy sediments with low TOC. However, the three highest concentrations

of chromium, copper, lead, and zinc usually were observed at three Sample Locations: A-1,

B-1, and C-3, and nickel was highest at A-1, B-1, and E-4 (Table 2).

PAHs were observed at several locations at concentrations near detection limits as shown

in Table 4. Highest concentrations of individual compounds and of total PAHs were found

at Sample Locations D1, B1, and E1; all these sample locations are in the west arm of the

NWR. Sample Location C1, between Sample Locations D1 and E1, had no detected PAHs.

Total PAHs were calculated using 0.5 times the detection limits for nondetected

compounds. This was done because the presence of some PAHs indicated that others

were probably present at concentrations below the detection limits.

All PAH concentrations were below the NOELs (Table 1) and so are not expected to have

adverse biological effects.

C-11

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

Detection limits for pesticides and PCBs were consistently higher than the NOELs and ERLs

(Table 1); therefore, whenever pesticides or PCBs were detected (Table 4), their concen-

trations exceeded both the NOELs and the ERLs.

Total PCBs were detected only in one of two laboratory duplicate analyses at Sample

Location C-3. Metabolites of DDT (4,4'-DDD and 4,4'-DDE) were detected at several

locations with 4,4'-DDE being widespread in the NWR. Total DDT (Table 4) was calculated

using 0.5 times the detection limit for nondetected compounds. Concentrations of DDT

were highest at Sample Location B-1 where 0.181 mg/kg of 4,4'-DDE were observed and

4,4'-DDD was also detected. Sample Locations B-2 and C-2 had the second and third

highest concentrations of 4,4'-DDE, with 4,4'-DDD detected in one of two duplicate

samples from C-2. As noted earlier, detection limits for DDTs were higher than the NOELs

and ERLs (Table 1).

SCO100217E0.WP5\95

The detected concentration of the 4,4'-DDE at Sample Location B-1 was above the

probable effects level (PEL) of 0.130 ppm (Table 1). Concentrations at other locations

where 4,4-DDE was detected (Table 4) were one-fifth to one-sixth of the PEL, but generally

over the ERM. Since the ERM for 4,4'-DDE is lower than the PEL, it was exceeded in 17

of the 19 samples where 4,4'-DDE was detected.

C-12

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 3 Regional Background Concentrations of Metals in Offshore Sediments					
Metal	Background ^{1,2,3,4} Concentrations (mg/kg dry weight)				
Arsenic	10 ¹				
Barium	490 ²				
Beryllium	6 ³				
Cadmium	0.55 ⁴ (0.4 ¹)				
Cobalt	8 ³				
Chromium	29.7 ^{4,5}				
Copper	6.94 ⁴ , 10 ¹				
Iron	19,000 to 30,000 ⁴				
Lead	6.02 ⁴ , 10 ¹				
Mercury	0.05 ¹				
Nickel	23.2 ⁴				
Selenium	0.2 to 0.3 up to 1.0 ¹				
Silver	0.51 ⁴ , 0.01 to 0.1 ¹				
Tin	1.18 to 11.06 ⁶				
Vanadium	103 ⁴				
Zinc	44.6 ⁴ , 40 to 60 ¹				

¹From Mearns et al. (1991).

²Calculated from data in Katz and Kaplin (1981).

³From Lindsay (1979).

⁴From Katz and Kaplin (1981).

⁵Could be lower in bays and harbors according to Mearns et al. (1991).

⁶From Anderson, Bay, and Thompson (1988); Los Angeles and Long Beach harbors.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

							Table 4					
						of Organic Constitu						<u> </u>
				POLYCYCLIC	AROMATI	IC HYDROCARBO	NS (All values)	nave units of ppb (ug/kg) dry w	/eight)		
Station Name	Sample Name	Naphthalene	Acenaphthalene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)- anthracene	Chrysene	Perylene
Al	1SBPP	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U
B1	2SBPP	9.51 U	9.51 U	9.51 U	9.51 U	32.2	9.51 U	54.3	54.3	24.1	44.2	16.1
B2	3SBPP	9.45 U	9.45 U	9.45 U	9.45 U	9.45 U	9.45 U	19.2	22.0	11.0	15.1	20.6
C1	4SBPP	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U
C2	24SBPP	11.6 U	11.6 U		11.6 U	11.6 U	11.6 U	21.2	24.1	12.5	23.1	11.6 U
C2	5SBPP	9.79 U	9.79 U		9.79 U	9.79 U	9.79 U	22.6	26.4	11.3	22.6	9.79 U
C3	6SBPP	9.29 U	9.29 U	9.29 U	9.29 U	9.29 U	9.29 U	24.0	24.0	10.9	24.0	9.29 U
C4	7SBPP	9.53 U	9.53 U		9.53 U	9.53 U	9.53 U	17.8	19.7	9.87	19.7	9.53 U
D1	8SBPP	9.41 U			9.41 U	72.7	23.1	101	97.4	44.6	54.5	13.2
D2	9SBPP	9.57 U			9.57 U	9.57 U	9.57 U	16.7	13.9	9.57 บ	11.2	27.9
D3	10SBPP	9.96 U			9.96 U	9.96 U	9.96 U	9.96 U	11.0	9.96 U	11.0	9.96 U
E1	11SBPP	9.10 U			9.10 U	12.1	15.6	43.3	52.0	20.8_	34.7	13.9
E2	12SBPP	9.77 U			9.77 U		9.77 U		10.2	9.77 U	9.77 U	9.77 U
E3	13SBPP	9.55 U					9.55 U	12.6	14.4	9.55 U	12.6	9.55 U
E3	29SBPP	9.46 U			9.46 U		9.46 U	15.5	17.3	9.46 U	15.5	9.46 U
E4	14SBPP	9.79 U					9.79 U	12.9	15.4	9.79 U	9.79 U	
E4	26SBPP	12.5 U					12.5 U	15.1	15.1	12.5 U	12.5 U	
F1	15SBPP	9.91 U					9.91 U	16.3	15.6	9.91 U	12.7	9.91 U
F1	25SBPP	9.88 U					9.88 U	12.8	11.2	9.88 U	9.88 U	
F2	16SBPP	9.74 U					9.74 U		17.1	10.2	11.9	9.74 U
F2	28SBPP	4					9.96 U		17.9	9.96 U	17.9	9.96 U
F3	17SBPP	1					9.78 U		9.78 U		9.78 U	
F4	18SBPP						9.86 U		13.9	9.86 U	12.1	9.86 U
F5	19SBPP						10.0 U		10.0 U		10.0 U	
F5	27SBPP	i .					9.90 U		9.90 U		9.90 U	
G1	20SBPP						9.64 U		9.64 U		9.64 U	
G2	21SBPP						9.81 U		20.9	11.3	20.9	9.81 U
G3	22SBPP						9.81 U		12.1	9.81 U	10.3	9.81 U
H1	23SBPP	9.57 U	J 9.57 U	J 9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U

a Exceeds the ERL sediment screening standard

- b Exceeds the PEL sediment screening standard
- U Undetected. Value equals detection limit.
- J Estimated. Below CRDL and above IDL/MDL

							able 4					
ļ	r		POLYCYCLIC AD			f Organic Constitu		from Seal Beacl	h NWR			
			POLYCYCLIC ARC	MATIC HYDRO	CARBONS	(Units are ppb (ug/		PESTICIDES				
Station Name	Sample Name	Benzo(b)- fluoranthene	Benzo(k)- fluoranthene	Benzo(e)- pyrene	Benzo(a) pyrene	Indeno(1,2,3-cd) pyrene	Dibenzo(a,h)- anthracene	Benzo(ghi)- perylene	4,4'-DDD	4,4'-DDE	4,4'-DDT	O,P'-DDT
A1	1SBPP	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	9.63 U	18.3 a	9.63 U a	
B1	2SBPP	26.1	28.1	30.2	26.1	14.1	9.51 U	16.1	40.2	181 b	9.51 U a	11
B2	3SBPP	11.0	11.0	27.5	12.4	9.45 U	9.45 U	9.45 U	27.5	27.5 a	9.45 U a	
C1	4SBPP	8.98 U	8.98 U	8.98 U	9.0 U	8.98 U	8.98 U	8.98 U	8.98 U	8.98 U a	8.98 U a	
C2	24SBPP	16.4	15.4	15.4	15.4	11.6 U	11.6 U	13.5	11.6 U	19.3 a	11.6 U a	
C2	5SBPP	15.1	15.1	15.1	13.2	9.79 U	9.79 U	11.3	18.8	37.7 a	9.79 U a	
C3	6SBPP	17.5	19.7	17.5	19.7	15.3	9.29 U	15.3	11.2 U	21.8 a	11.2 U a	
C4	7SBPP	15.8	15.8	13.8	17.8	13.8	9.53 U	15.8	9.53 U	19.7 a	9.53 U a	
D1	8SBPP	29.7	33.0	24.8	41.3	23.1	9.41 U	23.1	9.41 U	16.5 a	9.41 U a	9.41 U
D2	9SBPP	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U a	9.57 U a	9.57 บ
D3	10SBPP	9.96 U	9.96 U	9.96 U	9.96 U	9.96 U	9.96 U	9.96 U	9.96 U	18.3 a	9.96 U a	9.96 U
E1	11SBPP	20.8	22.5	17.3	20.8	10.4	9.10 U	12.1	9.10 U	17.3 a	9.10 U a	9.10 U
E2	12SBPP	9.77 U	9.77 U	9.77 U	9.77 U	9.77 U	9.77 U	9.77 U	9.79 U	9.79 U a	9.79 U a	9.79 U
E3	13SBPP	10.8	10.8	9.55 U	10.8	9.55 U	9.55 U	10.8	9.55 U	18.0 a	9.55 U a	9.55 U
E3	29SBPP	12.1	13.8	10.4	10.4	9.46 U	9.46 U	10.4	9.46 U	17.3 a	9.46 U a	9.46 U
E4	14SBPP	9.79 U	9.79 U	9.79 U	10.3	9.79 U	9.79 U	10.3	9.79 U	9.79 U a	9.79 U a	9.79 U
E4	26SBPP	12.5 U	12.5 U	12.5 U	12.5 U	12.5 U	12.5 U	12.5 U	12.5 U	12.5 U a	12.5 U a	12.5 U
F1	15SBPP	10.4	11.1	9.91 U	9.91 U	9.91 U	9.91 U	9.91 U	9.91 U	12.7 a	9.91 U a	9.91 U
F1	25SBPP	9.88 U	9.88 U	9.88 U	9.88 U	9.88 U	9.88 U	9.88 U	9.88 U	9.88 U a	9.88 U a	9.88 U
F2	16SBPP	11.9	11.9	10.2	11.9	9.74 U	9.74 U	10.2	9.74 U	17.1 a	9.74 U a	9.74 U
F2	28SBPP	12.5	14.3	10.8	10.8	9.96 U	9.96 U	12.5	9.96 U	17.9 a	9.96 U a	9.96 U
F3	17SBPP	9.78 U	14.5	9.78 U	9.78 U	9.78 U	9.78 U	9.78 U	9.78 U	9.78 U a	9.78 U a	
F4	18SBPP	10.4	12.1	10.4	10.4	9.86 U	9.86 U	9.86 U	9.86 U	17.3 a	9.86 U a	9.86 U
F5	19SBPP	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U a	10.0 U a	
F5	27SBPP	9.90 U	9.90 U	9.90 U	9.90 U	9.90 U	9.90 U	9.90 U	9.90 U	9.90 U a	9.90 U a	
G1	20SBPP	9.64 U	9.64 U	9.64 U	9.64 U	9.64 U	9.64 U	9.64 U	9.64 U	9.64 U a	9.64 U a	
G2	21SBPP	16.1	17.7	12.9	14.5	12.9	9.81 U	14.5	9.81 U	16.1 a	9.81 U a	_
G3	22SBPP	9.81 U	9.81 U	9.81 U	9.81 U	9.81 U	9.81 U	9.81 U	9.81 U	17.2 a	9.81 U a	
H1	23SBPP	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	9.57 U	14.4 a	9.57 U a	9.57 U

2 of 3

- a Exceeds the ERL sediment screening standard
- b Exceeds the PEL sediment screening standard
- U Undetected. Value equals detection limit.
- J Estimated. Bleow CRDL and above IDL/MDL

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

		Concentration	s of Organic Consti	Table 4 tuents in Sediment	ts from Seal F	Beach NWR
			TOTAL	IZED VALUES		
Station	Sample	Total	Total LMW	Total HMW	Total	Total
Name	Name	PCB	PAH	PAH	PAH	DDT
A1	1SBPP	9.63 U	28.9 U	60.0 U	88.9 U	32.7 Ja
B1	2SBPP	9.51 U	55.9 J	339 J	395 J	231 Ja
B2	3SBPP	9.45 U	28.3 U	165 J	193 Ј	64.4 Ja
C1	4SBPP	8.98 U	26.9 U	60.0 U	86.9 U	18.0 U a
C2	24SBPP	11.6 U	34.7 U	172 J	207 Ј	36.6 Ja
C2	5SBPP	9.79 U	29.4 U	168 J	197 Ј	66.3 Ja
C3	6SBPP	125 2	27.9 U	198 J	226 J	38.7 Ja
C4	7SBPP	9.53 U	28.6 U	170 Ј	198 Ј	34.0 Ja
D1	8SBPP	9.41 U	123 J	490 J	614 J	30.6 Ja
D2	9SBPP	9.57 U	28.7 U	110 J	138 J	19.1 U a
D3	10SBPP	9.96 U	29.9 U	71.9 Ј	102 J	33.2 Ja
El	11SBPP	9.10 U	45.9 Ј	274 Ј	319 J	31.0 Ja
E2	12SBPP	9.79 U	29.3 U	70.5 J	99.8 J	19.6 U a
E3	13SBPP	9.55 U	28.7 U	108 J	136 J	32.3 Ja
E3	29SBPP	9.46 U	28.4 U	125 J	154 J	31.5 Ja
E4	14SBPP	9.79 U	29.4 U	88.8 J	118 J	19.6 Ua
E4	26SBPP	12.5 U	37.5 U	80.3 J	118 J	25.0 U a
F1	15SBPP	9.91 U	29.7 U	101.1 J	131 J	27.6 Ja
F1	25SBPP	9.88 U	29.6 U	73.9 J	104 J	19.8 U a
F2	16SBPP	9.74 U	29.2 U	128 J	157 J	31.7 Ja
F2	28SBPP	9.96 U	29.9 U	136 J	166 J	32.9 Ja
F3	17SBPP	9.78 U	29.3 U	69.5 J	98.8 J	19.6 Ua
F4	18SBPP	9.86 U	29.6 U	106 Ј	136 J	32.1 Ja
F5	19SBPP	10.0 U	30.1 U	60.0 U	90.1 U	20.0 Ua
F5	27SBPP	9.90 U	29.7 U	60.0 U	89.7 U	19.8 U a
G1	20SBPP	9.64 U	28.9 U	60.0 U	88.9 U	19.3 Ua
G2	21SBPP	9.81 U	29.4 U	176 J	205 Ј	30.8 Ja
G3	22SBPP	9.81 U	29.4 U	77.7 J	107 J	31.9 Ja
H1	23SBPP	9.57 U	28.7 U	6.0 U	34.7 U	28.7 Ja

- a Exceeds the ERL sediment screening standard
- b Exceeds the PEL sediment screening standard
- U Undetected. Value equals detection limit.
- J Estimated. Bleow CRDL and above IDL/MDL

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Conclusions

DDT metabolite concentrations exceeded PEL sediment screening standards at sample

location B-1. Concentrations at other sample locations where they were detected scattered

throughout the NWR were one-sixth to one-fifth of the PEL, and generally over the Effects

Range Median (ERM). Three highest concentrations of DDT metabolites were at sample

locations B-1, B-2, and C-2.

Pesticide concentrations in sediments in the NWR were found to be comparable to those in

Los Angeles Harbor and other Southern California bays and harbors (Mearns et al., 1991).

However, the sample location with the highest concentration at the NWR was the most

landward sample locations in the west arm where the B-1, among highest concentrations of

several metals also were found. Gradients based on dry-weight concentrations of nonpolar

organic compounds can be misleading because those compounds are most likely

adsorbed to organic matter in the sediment. Organic contaminant concentrations

normalized to 1/kg TOC are shown in Table 5. The TOC-normalized concentration of 4,4-

DDE at sample location H-1, the outermost sample location, was similar to the TOC

normalized concentration at sample location B-1, among the most landward sample

locations. By contrast, the gradients indicated for the TOC-normalized PAH were similar to

those for the dry weight-normalized PAH, with the highest concentrations of detected

compounds occurring at sample locations D-1 and C-1, respectively.

C-21

CLE-C01-01F237-\$2-0001

Version: Final

Revision: 0

All PAH concentrations were below NOEL.

PCBs exceeded ERL sediment screening standards at sample location C-3.

Concentrations of several metals commonly exceeded the NOELs and ERLs, but were

generally not more than 3 times the NOEL or 2 times possible geologic background values.

No metals exceeded PEL, but were consistently highest (for chromium, copper, lead, and

zinc) at sample locations A-1, B-1, and C-3. Nickel was highest at sample location A-1, B-1,

and E-4.

A possible approach for evaluating whether metals are present as contaminants or as geo-

logical constituents of sediments has been proposed for other areas such as Florida

(Schropp et al., 1990) and Louisiana (Pardue et al., 1992). Those authors established

relationships between concentrations of heavy metals and aluminum, which is an abundant

metallic component of most soils, from clean sites. They noted that the relative amounts of

heavy metals to aluminum were higher than the established relationships in samples from

areas influenced by human activity. This approach requires a data set from regional clean

areas with a range of concentrations of aluminum and other metals that cover one or more

orders of magnitude.

The NWR data do not meet that requirement, nor do we know for sure which samples might

be "clean." However, the ratios of aluminum to other metals are relatively constant among

C-22

Table 5 TOC-Normalized Concentrations of Organic Constituents on Sediment from Seal Beach NWR

 	Т			POLYC	YCLIC AROMA"	TIC HYDROCARB	ONS (All values b	ave units of ug/ks	TOC)			
Station Name	Sample Name	Naphthalene	Acenaphthalene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)- anthracene	Chrysene	Perylene
A1	1SBPP	408 U	408 U	408 U	408 U	408 U	408 U	408 U	408 U	408 U	408 U	408 U
B1	2SBPP	508 U	508 U	508 U	508 U	1,720	508 U	2,900	2,900	1,290	2,370	860
B2	3SBPP	1,390 U	1,390 U	1,390 U	1,390 U	1,390 U	1,390 U	2,830	3,230	1,620	2,220	3,030
C1	4SBPP	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U
C2	24SBPP	897 U	897 U	897 U	897 U	897 U	897 U	1,640	1,870	971	1,790	897 U
C2	5SBPP	1,310 U	1,310 U	1,310 U	1,310 U	1,310 U	1,310 U	3,010	3,520	1,510	3,010	1,310 U
C3	6SBPP	477 U	477 U	477 U	477 U	477 U	477 U	1,230	1,230	560	1,230	477 U
C4	7SBPP	836 U	836 U	836 U	836 U	836 U	836 U	1,560	1,730	866	1,730	836 U
D1	8SBPP	1,490 U	1,490 U	2,100	1,490 U	11,500	3,670	16,000	15,500	7,080	8,650	2,100
D2	9SBPP	698 U	698 U	698 U	698 U	698 U	698 U	1,220	1,020	698 U	814	2,040
D3	10SBPP	643 U	643 U	643 U	643 U	643 U	643 U	643 U	708	643 U	708	643 U
E1	11SBPP	1,020 U	1,020 U	1,020 U	1,020 U	1,360	1,750	4,870	5,840	2,340	3,890	1,560
E2	12SBPP	1,550 U	1,550 U	1,550 U	1,550 U	1,550 U	1,550 U	1,620	1,620	1,550 U	1,550 U	1,550 U
E3	13SBPP	955 U	955 U	955 U	955 U	955 U	955 U	1,260	1,440	955 U	1,260	955 U
E3	29SBPP	809 U	809 U	809 U	809 U	809 U	809 U	1,330	1,480	809 U	1,330	809 U
E4	14SBPP	325 U	325 U	325 U	. 325 U	325 U	325 U	427	512	325 U	325 U	325 U
E4	26SBPP	498 U	498 U	498 U	498 U	498 U	498 U	603	603	498 U	498 U	498 U
F1	15SBPP	1,710 U	1,710 U	1,710 U	1,710 U	1,710 U	1,710 U	2,820	2,680	1,710 U	2,190	1,710 U
F1	25SBPP	941 U	941 U	941 U	941 U	941 U	941 U	1,220	1,060	941 U	941 U	941 U
F2	16SBPP	927 U	927 U	927 U	927 U	927 U	927 U	1,630	1,630	975	1,140	927 U
F2	28SBPP	977 U	977 U	977 U	977 Ū	977 U	977 U	1,930	1,760	977 U	1,760	977 U
F3	17SBPP	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U
F4	18SBPP	967 U	967 U	967 U	967 U	967 U	967 U	1,190	1,360	967 U	1,190	967 U
F5	19SBPP	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U
F5	27SBPP	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U
G1	20SBPP	497 U	497 U	497 U	497 U	497 U	497 U	497 U	497 U	497 U	497 U	497 U
G2	21SBPP	1,490 U	1,490 U	1,490 U	1,490 U	1,490 U	1,490 U	3,660	3,170	1,710	3,170	1,490 U
G3	22SBPP	1,490 U	1,490 U	1,490 U	1,490 U	1,490 U	1,490 U	1,570	1,830	1,490 U	1,570	1,490 U
H1	23SBPP	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U

a Exceeds the ERL sediment screening standard

U Undetected. Values are detection limits.

J Estimated. Below CRDL and above IDL/MDL.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 5
TOC-Normalized Concentrations of Organic Constituents on Sediment from Seal Beach NWR

	T		POLYCY	CLIC AROMATIC	HYDROCARRO	NS (Units are ug/kg	TOC)		PESTICIDES (ug/kg TOC)				
	 		Toblet	I	IIIDROCARDO	In (Cana are ug/ng	Dibenzo	-		resticibes	(ug/kg TOC)		
Station Name	Sample Name	Benzo(b)- fluoranthene	Benzo(k)- fluoranthene	Benzo(e)- pyrene	Benzo(a) pyrene	Indeno(1,2,3-cd) pyrene	(a,h)- anthracene	Benzo(ghi)- perylene	4,4'-DDD	4,4'-DDE	4,4'-DDT	O,P'-DDT	
A1	1SBPP	408 U	408 U	408 U	408 U	408 U	408 U	408 U	408 U	774	408 U	408 U	
B1	2SBPP	1,400	1,510	1,610	1,400	753	508 U	860	2,150	9,680	508 U	508 U	
B2	3SBPP	1,620	1,620	4,040	1,820	1,390 U	1,390 U	1,390 U	4,040	4,040	1,390 U	1,390 U	
C1	4SBPP	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	2,360 U	
C2	24SBPP	1,270	1,190	1,190	1,190	897 U	897 U	1,050	897 U	1,490 a	897 U a	897 U	
C2	5SBPP	2,010	2,010	2,010	1,760	1,310 U	1,310 U	1,510	2,510	5,020	1,310 U	1,310 U	
C3	6SBPP	896	1,010	896	1,010	784	477 U	784	576 U	1,120 a	576 U a	576 U	
C4	7SBPP	1,380	1,380	1,210	1,560	1,210	836 U	1,380	836 U	1,730	836 U	836 U	
D1	8SBPP	4,720	5,240	3,930	6,550	3,670	1,490 U	3,670	1,490 U	2,620	1,490 U	1,490 U	
D2	9SBPP	698 U	698 U	698 U	698 U	698 U	698 U	698 U	698 U	698 U	698 U	698 U	
D3	10SBPP	643 U	643 U	643 U	643 U	643 U	643 U	643 U	643 U	1,180	648 U	643 U	
E1	11SBPP	2,340	2,530	1,950	2,340	1,170	1,020 U	1,360	1,020 U	1,950	1,020 U	1,020 U	
E2	12SBPP	1,550 U	1,550 U	1,550 U	1,550 U	1,550 U	1,550 U	1,550 U	1,550 U	1,550 U	1,550 U	1,550 U	
E3	13SBPP	1,080	1,080	955 U	1,080	955 U	955 U	1,080	955 U	1,800	955 U	955 U	
E3	29SBPP	1,030	1,180	885	885	809 U	809 U	885	809 U	1,480	809 U	809 U	
E4	14SBPP	325 U	325 U	325 U	342	325 U	325 U	342	325 U	325 U	325 U	325 U	
E4	26SBPP	498 U	498 U	498 U	498 Ü	498 U	498 U	498 Ü	498 U	498 U	498 U	498 U	
F1	15SBPP	1,790	1,920	1,710 U	1,710 U	1,710 U	1,710 U	1,710 U	1,710 U	2,190 a	1,710 U a	1,710 U	
F1	25SBPP	941 U	941 U	941 U	941 U	941 U	941 U	941 U	941 U	941 U	941 U	941 U	
F2	16SBPP	1,140	1,140	975	1,140	927 U	927 U	975	927 U	1,630	927 U	927 U	
F2	28SBPP	1,230	1,410	1,050	1,050	977 U	977 U	1,230	977 U	1,760	977 U	977 U	
F3	17SBPP	1,320 U	1,960	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	1,320 U	
F4	18SBPP	1,020	1,190	1,020	1,020	967 U	967 U	967 U	967 U	1,700	967 U	967 U	
F5	19SBPP	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	3,710 U	
F5	27SBPP	4,310 U	4,310 U	4,310 U	4,310 Ü	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U	4,310 U	
G1	20SBPP	497 U	497 U	497 U	497 U	497 U	497 U	497 U	497 U	497 U	497 U	497 U	
G2	21SBPP	2,440	2,680	1,950	2,190	1,950	1,490 U	2,190	1,490 U	2,440	1,490 U	1,490 U	
G3	22SBPP	1,490 U	1,490 U	1,490 U	1,490 U	1,490 U	1,490 U	1,490 U	1,490 U	2,610	1,490 U	1,490 U	
H1	23SBPP	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	5,630 U	8,460	5,630 U	5,630 U	

a Exceeds the ERL sediment screening standard

U Undetected. Values are detection limits.

J Estimated. Below CRDL and above IDL/MDL.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 5
TOC-Normalized Concentrations of Organic Constituents
on Sediment from Seal Beach NWR
TOTALIZED VALUES (ug/kg TOC)

	TOTALIZED VALUES (ug/kg TOC)								
1			Total	Total					
Station	Sample	Total	LMW	HMW	Total	Total			
Name	Name	PCB	PAH	PAH	PAH	DDT			
A1	1SBPP	408 U	1,220 U	2,450 U	3,670 U	1,390 Ја			
B1	2SBPP	508 U	2,990 J	18,100 J	21,100 J	12,300 J a			
B2	3SBPP	1,390 U	4,170 U	24,100 J	28,300 J	9,470 J a			
C1	4SBPP	2,360 U	7,090 U	14,200 U	21,300 U	4,730 U a			
C2	24SBPP	900 U	2,690 U	13,500 J	16,200 J	2,840 Ja			
C2	5SBPP	1,310 U	3,920 U	22,300 J	26,200 J	8,840 J a			
C3	6SBPP	6,400 a	1,430 U	10,100 J	11,500 J	1,980 J a			
C4	7SBPP	836 U	2,510 U	14,900 J	17,400 J	2,990 J a			
D1	8SBPP	1,490 U	19,500 J	77,800 J	97,300 J	4,860 J a			
D2	9SBPP	698 U	2,100 U	7,880 J	9,980 J	1,400 U a			
D3	10SBPP	643 U	1,930 U	4,630 J	6,560 J	2,150 J a			
E1	11SBPP	1,020 U	5,160 J	30,700 J	35,800 J	3,480 J a			
E2	12SBPP	1,550 U	4,650 U	4,020 J	8,670 J	3,110 U a			
E3	13SBPP	955 U	2,870 U	10,700 J	13,500 J	3,230 J a			
E3	29SBPP	809 U	2,430 U	10,600 J	13,000 J	2,690 J a			
E4	14SBPP	325 U	976 U	2,920 J	3,900 J	651 U a			
E4	26SBPP	498 U	1,490 U	3,700 J	5,190 J	996 U a			
F1	15SBPP	1,710 U	5,120 U	17,400 J	22,500 J	4,750 Ja			
F1	25SBPP	941 U	2,820 U	6,980 J	9,810 J	1,880 U a			
F2	16SBPP	927 U	2,780 U	12,100 J	14,900 J	3,020 Ja			
F2	28SBPP	977 U	2,930 U	13,400 J	16,300 J	3,220 Ја			
F3	17SBPP	1,320 U	3,960 U	9,220 J	13,200 J	2,640 U a			
F4	18SBPP	967 U	2,900 U	10,400 J	13,300 J	3,150 J a			
F5	19SBPP	3,710 U	11,100 U	2,230 U	13,400 U	7,420 U a			
F5	27SBPP	4,310 U	12,900 U	25,800 U	38,800 U	8,610 U a			
G1	20SBPP	497 U	1,490 U	2,980 U	4,470 U	993 U a			
G2	21SBPP	1,490 U	4,460 U	26,600 J	31,100 J	4,670 J a			
G3	22SBPP	1,490 U	4,460 U	11,600 J	16,100 J	4,840 J a			
HI	23SBPP	5,630 U	16,900 U	33,800 U	50,700 U	16,900 J a			
·									

a Exceeds the ERL sediment screening standard

U Undetected. Values are detection limits.

J Estimated. Below CRDL and above IDL/MDL.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

all of the samples from the NWR, as shown in Table 6, which suggests the possibility that

variations in concentrations of metals may be due to variations in the major mineral con-

stituents of the sediment (mainly calcium and magnesium) rather than to specific sources of

metals contamination. One important qualification to that conclusion, as noted above, is

the consistency with which the highest concentrations of several metals were observed at

sample locations A-1, B-1, and C-3.

Based on State of California (1993) draft criteria for ranking toxic hot spots and the

chemical analysis of sediments, the NWR could rank between low and moderate as a toxic

hot spot. Area of potential concern for sediments is the northwest corner of the NWR,

particularly at sample locations A-1, B-1, and C-3 where several metals were consistently

elevated.

SCO100217E0.WP5\95

C-29

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Version: Final Revision: 0

\circ	
മ	

				Table 6	<u> </u>			
		Ratio	s of Aluminum	Content to Price	rity Pollutant	Metals		
Station	Sample							
Name	Name	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc
A1	1SB	3,070 1	146,000 U	503 1	435 1	760 2	597 2	169 2
B1	2SB	2,170 1	53,100	501 1	441 1	455 2	639 2	114 2
B2	3SB	1,980	44,600 U	551	522	344 1	676	122 1
C1	4SB	1,750	55,100 U	506	568	730	634 1	143 1
C2	24SB	1,540 1	73,500	506 1	474 1	596 1	605 2	121 2
C2	5SB	1,910 1	87,500	541 1	528 1	674 1	609 2	142 2
C3	6SB	3,280	120,000 U	528 1	457 1	733 1	725 2	121 2
C4	7SB	2,780	106,000	588 1	499 1	714 1	729 2	132 2
D1	8SB	2,350	78,700 U	653	600	762	811 1	154 1
D2	9SB	1,720 1	124,000 U	543 1	602 1	1,055 1	771 2	159 2
D3	10SB	1,330 1	83,300 U	460 1	455 1	520 1	589 1	125 2
E1	11SB	1,950	58,900 U	427	388 1	478 1	570 1	105 1
E2	12SB	1,880 1	105,000 U	524 1	631 1	892 1	750 1	162 2
E3	13SB	1,910	70,500 U	460	382 1	498 1	624 1	83 2
E3	29\$B	3,280	107,000 U	702	580 1	793 1	992 1	148 2
E4	14SB	1,060 1	92,700 U	414 1	374 1	663 1	519 2	125 2
E4	26SB	1,720 1	118,000 U	567 1	473 1	916 1	744 2	149 2
∥F1	15SB	1,790	46,500 U	484	500	471	641	128 1
F1	25SB	2,090	53,300 U	602	630	602	873	146 1
F2	16SB	2,340	74,900 U	464	427 1	567 1	640 1	114 2
F2	28SB	2,930	87,900 U	602	520 1	706 1	850 1	126 2
F3	17SB	1,870	51,300 U	478	532	498	708	140 1
F4	18SB	1,910 1	78,300 U	438 1	430 1	597 1	614 1	131 1
F5	19SB	2,570	72,000 U	502	645	731	770 1	178 1
F5	27SB	3,570	76,800 U	653	677	742	920 1	155 1
G1	20SB	1,230 1	69,100 U	443	485 1	845	552 1	156 1
G2	21SB	1,600	36,800 U	457	374	369	598	109
G3	22SB	2,690	76,800 U	451 1	435 1	615 1	616 1	114 2
H1	23SB	2,310	34,600 U	491	596	397	672	143
1 Concentrat	ion in Table 2 evo	eeds the NOFL se	diment screening star	idard (Table 1)				

¹ Concentration in Table 2 exceeds the NOEL sediment screening standard (Table 1)

² Concentration in Table 2 exceeds the ERL sediment screening standard (Table 1)

³ Concentration in Table 2 exceeds the PEL sediment screening standard (Table 1)

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

REFERENCES

Katz, A., and I. R. Kaplan. 1981. Heavy Metals Behavior in Coastal Sediments of Southern California: A Critical Review and Synthesis. *Marine Chemistry*. 10:261-299.

Lindsay, W. L. 1974. Chemical Equilibrium in Soils. John Wiley and Sons, N.Y.

Long, E. R., and L. G. Morgan. 1990. The Potential for Biological Effects of Sediment-Soiled Contaminants Tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52.

Mearns, A. J. et al. 1991. Contaminant Trends in the Southern California Bight; Inventory and Assessment. NOAA Technical Memorandum NOS ORCA 62.

Pardue, J. H., R. D. Dehune, and W. H. Patrick, Jr. 1992. Metal to Aluminum Correlation in Louisiana Coastal Wetlands; Identification of Elevated Metal Concentrations. J. Environ. Qual. 21:539-545.

Schropp, S., F. Lewis, H. Windom, J. Ryan, F. Calder, and L. Burney. 1990. Interpretation of Metal Concentrations in Estuarine Sediments of Fluoride Using Aluminum as a Reference Element,. *Estuaries* 13:227-235.

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

State of California. 1993. Status of the Bay Protection and Toxic Cleanup Program. Staff

Report. Bay Protection and Toxic Cleanup Program, State Water Resources Control Board,

Sacramento, California (November).

State of Florida. 1993. Development of an Approach to the Assessment of Sediment

Quality in Florida Coastal Waters. Florida Department of Environmental Regulation

(January).

Southwest Division, National Facilities Engineering Command. 1992. Naval Weapons

Station, Seal Beach, California. Installation Restoration Program. Final Wildlife Refuge Work

Plan (July).

C-34

Appendix D ENVIRONMENTAL CONTAMINANTS IN THE FOOD CHAIN NAVAL WEAPONS STATION SEAL BEACH

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Appendix D

ENVIRONMENTAL CONTAMINANTS IN THE FOOD CHAIN,

NAVAL WEAPONS STATION SEAL BEACH

Prepared Harry Ohlendorf, Earl Byron, and Kathy Freas

INTRODUCTION

This study was conducted to determine whether environmental contaminants occurred in

fish and invertebrates at Naval Weapons Station (NWS) Seal Beach at concentrations that

could be harmful to birds feeding in the tidal saltmarsh located on the NWS Seal Beach

(Navy, 1992). Most of this tidal saltmarsh is included within the Seal Beach National Wildlife

Refuge (NWR), which occupies 911 acres of the 5,000-acre NWS (Figure 1; USFWS and

Navy, 1990). The NWR is managed by the U.S. Fish and Wildlife Service (USFWS).

The NWR contains one of the largest remaining tidal saltmarshes in Southern California, and

provides a diversity of habitats for wildlife, including several listed endangered vertebrate

species, a critical nursery for many marine fish species, and significant populations of

saltmarsh invertebrates that provide an abundant food supply for fish, shorebirds, waterfowl,

and marine mammals.

D-1

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Since establishment of the NWR, USFWS management efforts have focused on several

endangered species. Two species of primary concern are the Light-footed Clapper Rail

(clapper rail), Rallus longirostris levipes, and the California Least Tern (least tern), Sterna

antillarum browni, which are listed as endangered by both the USFWS and the California

Department of Fish and Game (CDFG).

Clapper rails are permanent residents in the saltmarsh, whereas least terns are present

during the spring and summer (USFWS and Navy, 1990). Both of these species forage,

nest, and rear their young in the NWR. Biological sampling was conducted during the

spring, summer, and fall of 1992 and spring and summer of 1993 to evaluate contaminant

concentrations in invertebrates and fish that serve as food for clapper rails and least terns.

Food-chain sampling (collection of species eaten by clapper rails and least terns) was

conducted because food has the greatest potential to contaminate the birds. Food-chain

species chosen for sampling included the more common invertebrates and fish that had

been identified as important foods of the clapper rail and the least tern, as well as benthic

invertebrates that may be eaten by clapper rails and shorebirds (Atwood and Kelly, 1984;

Zembal and Fancher, 1988; Navy, 1992). To the degree possible, these food-chain species

were sampled during the spring and summer when the two endangered species were

nesting and feeding within the saltmarsh. These sampling times were selected because

they coincide with the breeding season of the clapper rail and least tern. The breeding

season is the period during which exposure to contaminants is of greatest concern because

adult birds consume and feed chicks food items collected in the NWR. Additionally,

D-2

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

embryos are exposed to contaminants from food consumed by adult female birds. Both

embryos and chicks are more sensitive to toxic effects of contaminants than are adult birds.

Fish were to be collected three times during the least tern breeding season so that samples

would reflect potential differences in contaminants in different size classes of fish. Sampling

across several size classes was important because adult least terns feed their chicks

increasingly larger fish as the chicks mature. No comparable temporal variability in the size

of various invertebrates (which are eaten by clapper rails) was expected, so they were to be

sampled once during the spring/summer season.

A phased approach was used in this study to assess current contaminant levels and their

potential impacts to birds in the NWR. Sampling locations for the first phase were selected

to represent a generalized exposure assessment for birds feeding in the marsh, and to

determine whether contaminant gradients occur in the NWR. If areas were identified as

having contaminant concentrations sufficiently elevated to cause adverse effects to birds.

subsequent phases would involve sampling more intensively in those areas (to identify

potential contaminant sources), or other approaches (such as comparison to regional

background levels of contamination) to further assess potential impacts to the NWR's

wildlife (Navy, 1992).

This Appendix reports Phase I sampling and analysis results for food-chain biota.

D-5

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

METHODS

Field Collection

Samples were collected by Jacobs Team biologists at 23 sample locations (Figure 2) and

4 ponds identified in the work plan (Navy, 1992). Table 1 provides a summary of sampling

times and species collected during the study. Striped shore crabs, Pachygrapsus

crassipes, saltmarsh snails, Melampus olivaceous, and horned snails, Cerithidia californica,

were collected at each of the 23 sample locations. Benthic invertebrates (polychaetes and

mollusks) were collected at sample locations where they were sufficiently abundant to

obtain adequate biomass for analysis (minimum 15 g). Fish (primarily topsmelt, Antherinops

affinis, and deepbody anchovy Anchoa compressa) were sampled in the four Port of Long

Beach (POLB) mitigation ponds located within the NWR. In addition, fish were collected in

NWR tidal channels where least terns were observed feeding and where it was possible to

sample with the available equipment. All sampling was coordinated with the USFWS to

ensure that disturbance to nesting birds (especially the clapper rails, which nest throughout

the NWR) would be minimized. Fish sampling also was coordinated with investigators

monitoring the POLB mitigation ponds to minimize impacts of the NWR sampling on their

ongoing monitoring of biotic colonization of the ponds.

An 11-foot-long inflatable boat was used to gain access to most of the sample locations.

Snails and crabs were collected by hand along the edges of tidal channels and on tidal

D-6

CLE-C01-01F237- 1 Version: Final Revision: 0

Table 1 Summary of Sampling Times and Species Collected During the Seal Beach NWR Study

	Year and Month								
	1992			1993					
Species	May	June	October	May	June	July			
Deepbody anchovy (Anchoa compressa)			X	Х	Х	X			
Northern anchovy (Engraulis mordax)	Х	Х			X	X			
California killifish (Fundulus parvipinnis)			X	X	X	X			
Queenfish (Seriphus politus)			Х		X				
Topsmelt (Atherinops affinis)	Х	Х	Х	X	X	Х			
Goby (Gobiidae)				X	X	X			
Diamond turbot (Hypsopsetta guttulata)					Х				
Horned snail (Certhidea californica)		X	X						
Saltmarsh snail (Melampus olivaceous)		X	Х	X	X				
Striped shore crab (Pachygrapsus crassipes)		Х	Х	X					
Clam			Х						
Ghost shrimp (Callianassa affinis)				Х	X				
Polychaete worms (<i>Nereis</i> sp.)				Х					
Filamentous algae					X				

CLE-C01-01F237-\$2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

flats. They were rinsed in ambient water from the marsh before being placed into sample

containers and frozen for storage. Algae or mud not removed during this rinsing remained

on the samples to represent the condition of the food items as they would be ingested by

foraging birds.

An air-lift dredge and screen (Pearson et al., 1973) were used at several sample locations in

an attempt to collect benthic invertebrates for analysis from shallow sediment. These

species occur in the top layers of sediment and are eaten by foraging shorebirds. In spite

of intense efforts at several sample locations in the NWR, this technique failed to produce

sufficient biomass for chemical analysis. Dr. Keith Miles, a USFWS benthic infauna

specialist, was consulted to evaluate the cause for the apparent low abundance of benthic

infauna in the NWR sediments. Dr. Miles found the sediments in the NWR to provide

suboptimal habitat for most infauna species because of very high clay content. Under

these conditions, infauna samples of sufficient biomass for analysis could be expected to

be collected only in the few areas in the NWR where sediments were comparatively sandy.

In consultation with the Navy and the USFWS, it was decided that the several sample

locations with comparatively sandy sediments would be the focus for collection of benthic

invertebrates. Polychaetes, ghost shrimp, razor clams, and other invertebrates at these

sample locations were collected by digging into the top layer of sediment (6- to 12-inches

deep) using hand trowels or by digging in the sediment under rocks set as channel-

protection riprap.

D-11

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Fish were captured with a 4-foot-deep, 100-foot-long, 1/4-inch mesh, beach seine. They

were sorted by species and those with adequate biomass were rinsed with ambient water

and frozen as composite samples for analysis. Individuals that were too large to be

considered food items for the least terns or of species with insufficient biomass to comprise

a sample for analysis were noted and returned to the pond or tidal channel.

Samples for organic contaminants analyses were placed in 250 milliliter (ml) or 500 ml

chemically cleaned and certified I-Chem glass jars. Samples for inorganics analyses were

placed in whirl-pak® plastic bags. Field-collected duplicate samples were taken for both

inorganic and organic analyses where organisms were found in adequate abundance.

Samples were stored in a freezer at the NWS pending shipment to the analytical laboratory.

USFWS conducted bioassay testing of sediments from each of the 23 sample locations

using a Microtox® test, which measures toxicity to marine bacteria and is sensitive to a

broad array of chemicals. When sediment samples were collected from 24 to 26 October

1992 for chemical analysis (see Appendix C), a subsample of the homogenized sediment

was taken for the bioassay. This sample was stored on ice in the field and then transported

to the USFWS office in Carlsbad, California, where the bioassays were conducted within 24

hours of collection.

The bioassays were conducted using the solid phase test protocol (Microbics, 1991), which

is used to measure the toxicity of materials that are tightly bound to particles in soil,

D-12

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

sediment, or sludge. The procedure allows the test organisms to come in direct contact

with toxicants in an aqueous suspension of the test sample, detecting both the soluble and

insoluble organic and inorganic material.

Arrangements for completion of contaminant analyses (other than Microtox®) on all samples

were included in an Interagency Agreement (IAG) between the Navy and the USFWS, which

included shipment of those samples to a USFWS contract laboratory. The IAG (Letter of

Interagency Agreement, Contract No. N68711-92-2015) could not be completed before the

1992 field season began, so efforts to finalize that agreement proceeded as samples were

collected. Samples could not be forwarded to the USFWS contract laboratory for analysis

until the IAG was completed. Therefore, following their collection and before completion of

the IAG, all samples were stored in a rented freezer in Building 68 at the NWS, as agreed to

by all parties. On 12 August 1992, Tim Smith/Jacobs Team, discovered that power had

been cut off to a portion of Building 68. The duration of the power outage is unknown, but

it was sufficient for the specimens stored there to thaw and decompose. Some of the whirl-

pak® containers ruptured, causing potential cross-contamination and rendering these

samples unusable.

Some of the thawed but intact samples were salvaged for analysis; the others were

discarded. Those salvaged (four crab samples, four horned snails, four saltmarsh snails,

four topsmelt, and two anchovies) were selected to represent various areas within the NWR

for comparison with results from a replacement collection. Where the organisms were

D-13

available, replacement samples were collected in October 1992 and during May, June, and

July 1993.

Following the discovery in August that all samples in the freezer had thawed, Jacobs Team

consulted the Navy (Jeff Kidwell), USFWS (Steve Goodbred and Leonard LeCaptain),

Jacobs Engineering Group Inc. (Steve Cox), and the USFWS contract laboratory (Terry

Wade) to determine whether the salvaged samples would be useful for analysis and, if not,

the best plan for obtaining replacement samples. The conclusions of this evaluation were

that: (1) The 18 salvaged samples should be analyzed; (2) Crabs and snails should be

collected to replace the lost samples (but the timing of this collection need not be

constrained by the breeding season because the invertebrates are consumed year-round by

clapper rails at the NWR); (3) Fish should be collected as soon as possible (because the

least tern breeding season was expected to end by mid-August); and, (4) Replacement fish

collection for the least tern breeding season should be scheduled for May, June, and July

1993. However, the Jacobs Team did not receive notice to proceed with the resampling

until late September 1992. Thus, the resampling for invertebrates and a limited fish

sampling was performed in October 1992. Invertebrate species that could not be recollected

at several sample locations in October 1992 were recollected in May or June 1993. Fish

were recollected in May, June, and July 1993.

Eleven samples of least tern eggs that failed to hatch in the breeding colony at NASA Island

were collected by the USFWS in 1991 and 1993 were analyzed for inorganic and organic

D-14

Revision: 0

contaminants. These samples included five single eggs and six composites composed of

three eggs each. After collection, the eggs were stored in a refrigerator until processing in

the USFWS laboratory. Eggs were measured and then cut open with a clean scalpel

around the middle. Contents were placed into I-Chem (chemically cleaned) jars and

frozen. Shells were cleaned of loose debris with tap water and allowed to dry for eggshell

thickness measurements (being performed by USFWS and not reported here).

Analytical Methods

Samples of invertebrates and fish were analyzed as whole-body composited samples for

organic and inorganic contaminants listed in Table 2 by the Geochemical and Environ-

mental Research Group (GERG) at Texas A&M University, College Station. These analyses

were conducted through the IAG between the Navy and USFWS. The GERG is under

contract to USFWS to perform analyses of biological samples for the contaminants of

concern at NWS Seal Beach. The GERG was selected from among the USFWS-contracted

laboratories because it was the only laboratory that could perform the full suite of analyses

required. Because of the focus on the endangered species occupying the NWR, it was

considered essential that samples be analyzed at a USFWS-contracted laboratory to ensure

the acceptability of the data.

Method detection limits used were those specified by the USFWS and are based on NOAA

Quality Assurance/Quality Control (QA/QC) criteria. Analyses for organic contaminants were

D-15

conducted following the NOAA Status and Trends methods described in Appendix B of the Final Work Plan (Navy, 1992). Briefly, the samples were extracted and cleaned up before analysis by gas chromatography/mass spectrometry (GC/MS). Target detection limits were 5 nanograms per gram (ng/g) (or 0.005 milligrams per kilograms [mg/kg]) for individual Polycyclic Aromatic Hydrocarbon (PAHs) and 2 ng/g (or 0.002 mg/kg) for individual pesticides or polychlorinated biphenyls (PCBs) when levels of contamination were low; in samples with high levels of contamination the target detection limits were 60 times those values. Table 2 provides a list of detection limits achieved in the analyses. Most inorganics were analyzed by inductively coupled plasma emission spectroscopy following sample However, lead was analyzed by graphite furnace atomic absorption digestion. spectroscopy (AA) and mercury by cold vapor reduction AA. Target detection limits were as follows: 4 mg/kg lead; 3 mg/kg silver; 1 mg/kg barium; 0.6 mg/kg copper; 0.5 mg/kg arsenic, chromium, nickel, and selenium; 0.2 mg/kg zinc; and 0.1 mg/kg cadmium and mercury. Actual detection limits are listed in Table 2.

Least tern eggs were analyzed for inorganics, organochlorines, and PAHs if adequate sample biomass was available. However, the sample biomass was sometimes inadequate for several eggs, so the following analyses were performed: six composites and three single eggs were analyzed for all chemicals, and two single eggs were analyzed only for organics. Results for inorganics were expressed on dry-weight basis and organics were reported on wet-weight basis. Although wet-weight contaminant concentrations in eggs are typically adjusted to fresh wet-weight concentrations (to account for moisture loss that

Table 2 Method Detection Limits for Contaminants in Biological Samples

Sheet 1 of 4

	Sheet 1 of 4
Chemical	Method Detection Limit
Inorganics (mg/kg, dı	ry weight)
Aluminum	11.1
Arsenic	0.5
Barium	0.2
Boron .	0.7
Cadmium	0.1
Chromium	4.0
Copper	0.8
Iron	1.4
Lead	0.5
Magnesium	12.8
Manganese	0.3
Mercury	0.1
Molybdenum	1.7
Nickel	2.6
Selenium	0.5
Silver	0.3
Strontium	0.1
Vanadium	3.6
Zinc	1.2
Organics (mg/kg, wet	weight)
Acenaphthalene	0.02
Acenaphthene	0.01 or 0.02
Acenaphthylene	0.01 or 0.02
Aldrin	0.01 or 0.02

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 2 Method Detection Limits for Contaminants in Biological Samples

Sheet 2 of 4

	Sheet 2 of 4
Chemical	Method Detection Limit
Anthracene	0.01 or 0.02
1,2-Benzanthracene	0.02
Benzo(a)anthracene	0.01 or 0.02
Benzo(a)pyrene	0.01 or 0.02
Benzo(b)fluoranthene	0.01 or 0.02
Benzo(e)pyrene	0.01 or 0.02
Benzo(g,h,i)perylene	0.01 or 0.02
Benzo(k)fluoranthene	0.01 or 0.02
alpha-BHC	0.01 or 0.02
beta-BHC	0.01 or 0.02
delta-BHC	0.01 or 0.02
gamma-BHC (Lindane)	0.01 or 0.02
1,1-Biphenyl	0.01 or 0.02
Biphenyl	0.02
C1-Chrysenes	0.01 or 0.02
C2-Chrysenes	0.01 or 0.02
C3-Chrysenes	0.01 or 0.02
C4-Chrysenes	0.01 or 0.02
alpha-Chlordane	0.01 or 0.02
gamma-Chlordane	0.01 or 0.02
Chrysene	0.01 or 0.02
4,4'-DDD	0.01 or 0.02
4,4'-DDE	0.01 or 0.02
4,4'-DDT	0.01 or 0.02
1,2,5,6-Dibenzanthracene	0.02
Dibenzo(a,h)anthracene	0.01 or 0.02

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 2 Method Detection Limits for Contaminants in Biological Samples

Sheet 3 of 4

Sneet 3 of 4
Method Detection Limit
0.01 or 0.02
0.02
0.01 or 0.02
0.01 or 0.02
0.01 or 0.02
0.01 or 0.02
0.01 or 0.02
0.01 or 0.02
0.01 or 0.02
0.01 or 0.02
0.01 or 0.02
0.01 or 0.02
0.01 or 0.02
0.01 or 0.02

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 2 Method Detection Limits for Contaminants in Biological Samples

Sheet 4 of 4

	Officer 4 Of 4
Chemical	Method Detection Limit
Naphthalene	0.01 or 0.02
cis-Nonachlor	0.01 or 0.02
trans-Nonachlor	0.01 or 0.02
o,p'-DDD	0.01 or 0.02
o,p'-DDE	0.01 or 0.02
o,p'-DDT	0.01 or 0.02
Oxychlordane	0.01 or 0.02
C1-Phenanthrenes & Anthracenes	0.01 or 0.02
C2-Phenanthrenes & Anthracenes	0.01 or 0.02
C3-Phenanthrenes & Anthracenes	0.01 or 0.02
C4-Phenanthrenes & Anthracenes	0.01 or 0.02
PCB-1254	0.01 or 0.02
PCB-1260	0.01 or 0.02
PCB-TOTAL	0.01 or 0.02
Perylene	0.01 or 0.02
Phenanthrene	0.01 or 0.02
Pyrene	0.01 or 0.02
Toxaphene	0.01 or 0.02
1,6,7-Trimethyl-Naphthalene	0.01 or 0.02

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

occurs during incubation), this was not done with samples from the NWR because of the

manner in which samples were handled (e.g., compositing eggs, etc.). Nevertheless,

samples from most of the eggs analyzed for organics had 70 to 77 percent moisture and

5.5 to 9.0 percent lipid, which are approximately normal levels. One sample had only

25 percent moisture and 27 percent lipid. The concentrations of organics in that egg were

adjusted to approximate fresh wet-weight concentrations by dividing the reported values by

3.5, thereby reducing the concentrations to equivalent levels of moisture and lipid in other

samples.

Quality assurance/quality control (QA/QC) for the chemical analyses was provided by the

USFWS in accordance with that agency's existing contract with GERG. Method blanks

were run with every 20 samples or with every sample set, whichever was more frequent.

Blank levels were acceptable if they were no more than 3 times the method detection limit

(MDL). Matrix spike/matrix spike duplicate (MS/MSD) samples were run at the same

frequency as method blanks with the spiking level between 3 and 10 times the MDL.

Surrogate materials were added (spiked) to each sample (including QC samples) at levels

between 3 and 10 times the MDL. In addition, standard reference materials were analyzed

at a frequency of one per sample batch (or 20 samples). Criteria for acceptance of

analytical results are discussed in Appendix B of the work plan (Navy, 1992).

D-25

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Statistical Methods

The NWR biological tissue analysis results required log transformation to normalize data

distributions before statistical analysis, as is common for environmental analytical data.

Means were computed (as geometric means) if detected values exceeded 50 percent of the

samples. For cases where chemicals were detected in more than 50 percent, means were

computed using one-half of the MDL for the "nondetected" values. This procedure is

commonly used when contaminant concentrations in biological samples are not normally

distributed and when the chemicals are not measurable in all samples. All means

presented in this report have been back-transformed as anti-logs from the means of log

values to produce the geometric means.

Contaminant concentrations in the salvaged samples were compared to the recollected

samples of identical species and sampling stations for any given analyte using a series of

paired t-tests.

Linear regression analysis was used to determine relationships between Microtox® toxicity

results and sediment chemistry. Standard pairwise linear regression (using log-transformed

values) was performed using sediment chemistry as the independent variable and toxicity

as the dependent variable for each pairwise comparison. The significance of the regression

coefficients was tested by F test and the strength of correlations between pairs was

computed as r-squared values.

D-26

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

RESULTS

Chemical concentrations in invertebrate and fish tissue were originally reported by the

GERG in mg/kg on a dry-weight basis for inorganic analytes and on a wet-weight basis for

organic analytes. Results are reported here on those same bases. Some toxicity

information is available on a wet-weight basis for inorganics or on a lipid-standardized basis

for organic analytes. Using the information on average moisture and lipid content for each

species given in Table 3, it is possible to convert results between dry weight, wet weight,

and lipid weight standardized values to obtain approximate values based on the following

formulas:

o Dry-Weight Concentration, mg/kg = (Wet Weight Concentration, mg/kg) X 100/(100-

Moisture %)

o Wet-Weight Concentration, mg/kg = (Dry Weight Concentration, mg/kg/100) X (100-

Moisture %)

o Lipid-Weight Concentration, mg/kg = (Wet Weight Concentration, mg/kg) /

(Lipid% / 100)

D-27

CLE-C01-01F237-\$2-0001 Version: Final

Revision: 0

Salvaged Samples

The 18 invertebrate and fish samples salvaged from the group of thawed samples that had

been stored in glass jars for organic chemical analyses were analyzed for metals and

organic compounds following thawing and refreezing. The results from these salvaged

samples were compared with results from recollected samples of the same species from the

same location (but different sampling dates) that had been kept frozen continuously before

analysis, as shown in Figure 3. The results were compared statistically using paired t-tests

for the most commonly detected metals and organic compounds, which included

chromium, copper, lead, zinc, and DDE for all species tested. All t-tests showed no

significant differences between group means, indicating that the thawed sample results

could be used in combination with the other NWR study data (Figure 3). The data from the

salvaged samples, combined with the other NWR study data, yielded the results discussed

below.

Invertebrates

At least six species of invertebrates were collected at the NWR sample locations over the

course of the study. Horned snails, saltmarsh snails, and striped shore crabs, known to be

common food for the clapper rail, were common at nearly all sample locations and provided

the best measure of food chain contaminant bioaccumulation throughout the NWR. The

objective of the invertebrate collection was to gather samples of these three invertebrate

D-28

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 3 Average Moisture and Lipid Content of Seal Beach NWR Invertebrates and Fish Sampled for Analysis											
Species	Average Lipid (%)	Average Moisture (%)									
Invertebrates											
Horned Snail	0.15	36									
Saltmarsh Snail	0.51	39									
Striped Shore Crab	0.66	66									
Clam	0.16	61									
Invertebrate Average	0.46	47									
Fish											
Topsmelt	1.04	78									
Deepbody Anchovy	2.74	77									
Northern Anchovy	1.35	81									
Goby	1.28	80									
Bay Goby	1.59	79									
Killifish	1.16	78									
Diamond Turbot	0.73	80									
Queenfish	0.63	82									
Fish Average	1.61	78									

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

oles 05-02-94afo

Figure 3
Comparison of Average Chemical Concentrations
in Salvaged and Continuously Frozen Samples

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

species from all sample locations during at least one sampling period. Invertebrate species

were collected from the NWR sample locations during June and October 1992 and during

May and June 1993. In addition to the common clapper rail food species, several samples

of burrowing polychaete worms, razor clams, ghost shrimp, and a sample of filamentous

algae were collected as examples of possible food items of shorebirds or waterfowl, thus

giving a further characterization of the overall extent of contamination.

The frequency of detection and maximum concentration for each chemical across inver-

tebrate species (and algae) are shown in Table 4. Analytical values above MDLs varied

greatly with analyte. A high frequency of inorganic chemicals was detected while organic

contaminants were usually not detected. Table 5 shows the geometric mean contaminant

concentrations for the NWR invertebrate samples across sites. Only detected chemicals are

shown.

The inorganic chemicals detected in fewer than half of the total analyses were beryllium,

cadmium, mercury, molybdenum, nickel, selenium, and silver (Table 4). The highest

concentrations of inorganic chemicals were often found in the least frequently collected

species (Table 4). The most common, widely distributed, and easily collected food-chain

species, the horned snails, usually were less contaminated than other species. The highest

concentrations of cadmium, chromium, copper, lead, and nickel were found in filamentous

algae, ghost shrimp, and polychaete worms. The maximum mercury value was found in a

horned snail sample and the highest zinc concentration was found in saltmarsh snails. In

D-33

CLE-C01-01F237-S2-0001 Version: Final

ersion: rinai Revision: 0

general, these patterns were repeated in the geometric means, although many

contaminants were not detected in frequencies high enough for an accurate computation of

means (Table 5).

DDE in saltmarsh snails was the only organic chemical detected in more than half of the

samples. Only 10 of 70 organic analytes showed any detected values in the NWR

invertebrate tissue samples. The full list of organic analytes is shown in Table 2. Maximum

values of individual organic contaminants were spread among horned snails, saltmarsh

snails, and shore crabs (Table 4). DDD and PCBs were highest in the shore crab, while the

maximum DDE concentration was found in a horned snail sample. Naphthalene,

fluoranthenes, pyrenes, and 1,1 biphenyl concentrations were highest in saltmarsh snail

samples.

Those species collected at all sample locations (horned snails, saltmarsh snails, shore

crabs) allowed a characterization of contaminant spatial heterogeneity, although inorganic

and organic maxima did not follow the same general patterns in distribution. Table 6 lists

the sample locations for each of those species where the highest concentrations of eight

potentially significant chemicals were found. Up to three sample locations with the highest

contaminant concentrations are listed by analyte and species, and several sample locations

are consistently associated with elevated heavy metal concentrations in invertebrate tissue.

Sample locations with the highest values (among the top three for at least two invertebrate

species) include B-1, C-1, and F-5 for cadmium, G-3 for copper, G-2 and E-4 for lead, and

D-34

Table 4 Frequency of Detection and Maximum Concentration of Contaminants in Seal Beach NWR Invertebrates and Algae

Sheet 1 of 2

	Horned Snail		Saltmarsh Snail		•	d Shore ab		nost rimp	CI	am	•	chaete orm	Filamentous Algae	
Chemical ^a	Np	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.
INORGANICS (mg/kg														
Aluminum	27/27	963	27/27	2,610	26/26	1,850	2/2	2,400	2/2	1,900	3/3	9,200	1/1	7,020
Arsenic	25/27	1.98	26/27	2.92	25/26	7.58	2/2	13.0	2/2	5.91	3/3	29.5	1/1	3.00
Barium	27/27	4.70	22/22	13.4	18/18	12.5	1/1	5.59					1/1	24.2
Boron	27/27	13.0	22/22	10.3	18/18	15.3	1/1	18.7					1/1	67.5
Cadmium	8/27	0.15	23/27	0.76	8/26	0.23	2/2	0.66	0/2		3/3	0.89	0/1	
Chromium	27/27	12.7	27/27	13.3	26/26	8.89	2/2	10.9	2/2	10.2	3/3	9.62	1/1	92.7
Copper	27/27	33.7	26/26	18.2	26/26	105	2/2	363	2/2	5.36	3/3	86.5	1/1	10.8
Iron	27/27	945	27/27	2,620	26/26	1,800	2/2	2,480	2/2	2,260	3/3	10,200	1/1	7,840
Lead	27/27	2.50	27/27	7.32	25/26	3.09	2/2	8.18	2/2	2.33	3/3	148	1/1	5.00
Magnesium	27/27	4,100	22/22	4,020	18/18	12,100	1/1	8,700					1/1	15,600
Manganese	27/27	181	27/27	155	26/26	85.8	2/2	103	2/2	144	3/3	214	1/1	147
Mercury	2/27	0.56	0/27		4/26	0.16	0/2		0/2		1/3	0.11	0/1	
Molybdenum	0/27		0/22		0/18		0/1						1/1	11.5
Nickel	0/27		2/27	3.20	0/26		2/2	5.74	0/2		3/3	9.35	1/1	78.9
Selenium	6/27	1.07	8/27	1.14	15/26	1.30	2/2	2.53	1/2	0.88	3/3	2.97	1/1	0.50
Silver	0/27		20/22	0.34	9/18	0.73							0/1	

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 4 Frequency of Detection and Maximum Concentration of Contaminants in Seal Beach NWR Invertebrates and Algae

Sheet 2 of 2

	Horned Snail		Saltmarsh Snail		Striped Shore Crab			nost rimp	CI	am		chaete orm		entous gae
Chemical ^a	Νþ	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.
Strontium	27/27	1,050	22/22	1,330	18/18	2,130	1/1	592					1/1	79.3
Vanadium	26/27	6.52	19/22	9.42	12/18	5.34	0/1						1/1	18.6
Zinc	27/27	61.6	27/27	542	26/26	62.8	2/2	87.3	2/2	106	3/3	113	1/1	38.8
ORGANICS (mg/kg,	wet wei	ght)												
1,1-Biphenyl	2/27	0.03	3/23	0.03										
4,4'-DDD					1/26	0.02								
4,4'-DDE	4/30	0.05	18/27	0.03	9/26	0.04			1/3	0.02				
C1-Pyrenes and Fluoranthenes			1/27	0.01										
C1-Naphthalenes	1/27	0.02												
C4-Naphthalenes			1/27	0.01										
Hexachlorobenzene	2/30	0.01												
PCB-1254	3/28	0.02	5/27	0.27	4/26	0.58			1/3	0.07				_
PCB-1260					2/26	0.02								
PCB-TOTAL	3/30	0.02	5/27	0.28	4/26	0.61			1/3	0.07				

^aOnly those chemicals detected in these samples are listed.

bN = Number with detectable concentration/number of samples analyzed.

Table 5 Geometric Mean Concentrations of Contaminants in Seal Beach NWR Invertebrates

Sheet 1 of 2

			Spec	ies						
Chemical	Horned Snail	Saltmarsh Snail	Striped Shore Crab	Ghost Shrimp	Clam	Polychaete Worms	All Species			
INORGANICS (mg/kg, dry	NORGANICS (mg/kg, dry weight)									
Aluminum	305.4	689.9	531.7	919.3	1,013	8,842	542.4			
Arsenic	1.207	1.442	4.316	8.767	5.047	20.72	2.218			
Barium	2.954	5.950	8.851	5.590	NC	NC	4.926			
Boron	7.720	6.807	10.71	18.68	NC	NC	8.175			
Cadmium	NC	0.203	NC	0.335	NC	0.584	NC			
Chromium	11.65	11.41	7.000	8.288	9.767	7.874	9.732			
Copper	14.81	11.46	64.71	254.6	4.867	55.24	22.91			
Lead	0.979	1.930	1.171	2.477	2.169	25.51	1.466			
Magnesium	1,962	2,281	10,310	8,698	NC	NC	3,219			
Manganese	65.49	62.15	32.28	65.44	74.663	163.9	54.23			
Mercury	NC	NC	NC	NC	NC	NC	NC			
Nickel	NC	NC	NC	3.987	NC	8.726	NC			
Selenium	NC	NC	0.592	2.459	NC	2.068	NC			
Silver	NC	NC	NC	NC	NC	NC	NC			
Strontium	946.0	1,151	1,733	591.8	NC	NC	1168			
Vanadium	4.764	5.065	3.767	NC	NC	NC	4.553			
Zinc	27.75	248.1	49.83	85.34	71.16	102.5	70.05			

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S Version: F

Revision: 0

Table 5 Geometric Mean Concentrations of Contaminants in Seal Beach NWR Invertebrates

Sheet 2 of 2

		Species										
Chemical	Horned Snail			Clam	Polychaete Worms	All Species						
ORGANICS (mg/kg, wet	weight)											
1,1 Biphenyl	NC	NC	NC	NC	NC	NC	NC					
4,4'-DDD	NC	NC	NC	NC	NC	NC	NC					
4,4'-DDE	NC	0.010	NC	NC	NC	NC	NC					
C1-Fluoranthenes & Pyrenes	NC	NC	NC	NC	NC	NC	NC					
C1-Naphthalenes	NC	NC	NC	NC	NC	NC	NC					
C4-Naphthalenes	NC	NC	NC	NC	NC	NC	NC					
Hexachlorobenzene	NC	NC	NC	NC	NC	NC	NC					
PCB-1254	NC	NC	NC	NC	NC	NC	NC					
PCB-1260	NC	NC	NC	NC	NC	NC	NC					
PCB-TOTAL	NC	NC	NC	NC	NC	NC	NC					
NC = Geometric Mean n	ot computed b	ecause detec	ted concentration	occurred in	less than half	the samples.						

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 6 Biota Sampling Locations Where Highest Concentrations of Contaminants of Concern Were Found in Commonly Collected Species

		Invertebrates		Fish
Chemical ^a	Horned Snail	Saltmarsh Snail	Striped Shore Crab	Topsmelt
Cadmium	D-2	F-5	F-5	Pond 2
	G-1	A-1	B-1	F-2
	B-1	C-1	C-1	Pond 3
Chromium	D-2	G-3	D-3	Pond 3
	B-1	E-1	E-2	E-1
	F-2	A-1	E-4	B-1
Copper	C-1	F-1	H-1 .	Pond 3
	E-2	G-3	F-5	E-4
	D-2	E-4	G-3	B-1
Lead	G-2	G-2	E-4	Pond 3
	H-1	C-1	G-1	F-1
	B-1	E-4	F-1	Pond 4
Nickel		G-3		Pond 3
		E-4		E-1
				B-1
Zinc	D-3	F-5	C-2	F-2
	D-2	G-3	B-1	Pond 3
	E-2	B-2	F-5	E-3
DDE	B-1	A-1 ⁻	B-1	Pond 1
	C-2	B-1	H-1	Pond 2
	A-1	B-2	G-2	C-4
PCBs	E-3	E-3	D-1	Pond 4
	F-1	B-2	H-1	C-4
	E-1	C-1	F-4	Pond 1

^aFor each chemical, and within each species, the locations are listed at which highest concentrations were found. Blank spaces indicate that the chemical was found at fewer than three locations. Within each species, a particular location is listed only once, even if two samples of that species from that location had among the three highest concentrations (which sometimes occurred).

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

F-5 for zinc. In contrast, the highest invertebrate concentrations of DDE were found in more

than one species at stations A-1 and B-1 and of PCBs at E-3 (Table 6). (See later

discussion comparing observed concentrations to assessment levels.)

Fish

Overall frequency of detection and maximum concentrations for chemicals in fish are given

in Table 7. Fish samples yielded detectable values and calculatable geometric means with

a greater frequency than did the invertebrate samples. Geometric mean values for organic

and inorganic chemicals detected in NWR fish are shown in Table 8.

The detection frequency for analytes in fish was slightly different than for invertebrate

species. Inorganic chemicals detected in fewer than half of the total samples were berylli-

um, cadmium, mercury, molybdenum, nickel, and silver (Table 7). In contrast, the only

organic analytes detected in more than half of the samples were the DDT derivatives, PCBs,

phenanthrenes, and anthracenes (Tables 7 and 8). A total of only 19 out of 70 organic

analytes showed values above detection limits in the NWR fish tissue samples. The full list

of organic analytes is given in Table 2.

Inorganic chemicals of most interest for bioaccumulation and potential toxicity in fish tissue

include cadmium, chromium, copper, lead, mercury, nickel, and zinc. With the exception of

copper in killifish and mercury in deepbody anchovy, heavy metals were found in highest

D-45

CLE-C01-01F237-\$2-0001 Version: Final

Revision: 0

concentrations in topsmelt samples (Table 7). The same general pattern is shown by the

geometric means (Table 8). As an exception, the high mean concentrations of chromium

and mercury in diamond turbot were probably influenced by the small number of diamond

turbot samples.

SCO100217E0.WP5\95

The inorganic chemical pattern does not hold true for organic contaminants, where high

concentrations were more evenly divided between topsmelt and deepbody anchovy. In

general, the highest concentrations of biphenyl, DDD, BHC, naphthalenes, and fluorenes

were found in topsmelt (Table 7). However, the highest concentrations of DDT, DDE, and

PCBs were found in deepbody anchovy, the species with the greatest lipid content of all

fish species analyzed (Table 3).

Topsmelt were the only fish collected in sufficient distribution and abundance throughout

the NWR to characterize the spatial heterogeneity of fish tissue contamination. In general,

the four mitigation ponds at the landward ends of the west and east arms of the tidal

saltmarsh were the areas from which samples yielded the highest contaminant

concentrations. For heavy metals, Pond 3 had the greatest number of maximum

concentrations (Table 6). The organochlorine compound maxima were most commonly

seen in topsmelt samples from Pond 1 and sample location C-4.

D-46

Table 7
Frequency of Detection and Maximum Concentration of Contaminants in Seal Beach NWR Fish

Sheet 1 of 3 Northern Deepbody Diamond **Topsmelt Anchovy** Anchovy Goby Killifish Turbot Queenfish Max. Max. Max. Max. Max. Max. Max. Νþ Chemical^a N N N Conc. N Conc. Ν Conc. N Conc. Conc. Conc. Conc. INORGANICS (mg/kg, dry weight) 1,300 2/2 439 6/6 6/6 5/5 160 33/33 3,860 9/9 1,140 800 565 1/1 Aluminum 4.43 6/6 4.68 5/5 2/2 33/33 3,52 9/9 3.67 6/6 4.14 3.05 1/1 2.50 Arsenic 25/25 8/8 6/6 5/5 4.97 4/4 8.81 2/2 3.19 1/1 1.82 **Barium** 20.1 5.69 4.61 7/7 6/6 4/4 24/24 107 100 29.4 49.1 4/4 18.4 1/2 9.13 1/1 24.3 Boron 1/6 1/5 0/1 3/33 0.25 2/9 0.15 0/2 Cadmium 0/6 0.16 0.12 5/5 2/2 43.9 1/1 Chromium 33/33 71.2 4/9 18.0 4/6 6.64 5/6 15.3 18.4 5.61 6/6 6/6 5/5 2/2 3.56 8.56 21.1 5.56 1/1 3.66 Copper 33/33 16.2 9/9 4.91 6/6 5/5 1,540 2/2 1/1 177 4,220 6/6 659 624 32/33 9/9 1.140 842 Iron 2/5 27/33 3/6 0.87 3/6 2.81 1.31 0/2 0/1 Lead 7.78 2/9 0.64 25/25 4,020 3.560 6/6 3.690 5/5 2,500 4/4 3,060 2/2 2,570 1/1 2,700 Magnesium 8/8 5/5 2/2 33/33 9/9 29.0 6/6 26.4 6/6 55.8 73.5 59.4 1/1 22.8 113 Manganese 1/6 1/5 0/2 0/1 2/33 0.11 Mercury 0.11 8/9 0.26 0/6 0.11 1/1 1/6 4.80 1/4 1/4 2.60 4.80 0/1 Molybdenum 8/24 110 3/7 100 49.1 26/33 11.0 2/6 3.79 4/6 8.29 3/5 9.61 2/2 25.5 1/1 2.84 44.5 1/9 Nickel 5/5 1/1 6/6 2.71 2/2 1.88 1.04 32/33 9/9 2.40 6/6 1.40 1.49 2.44 Selenium 4/4 1/1 23/24 181 6/6 158 4/4 174 349 1/1 137 158 Strontium 206 6/7 1/5 16/25 10.4 0/8 0/6 3.68 1/4 6.26 2/2 4.70 0/1 Vanadium 6/6 6/6 5/5 2/2 1/1 75.3 33/33 9/9 117 84.0 99.0 116 97.4 Zinc 147

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 7 Frequency of Detection and Maximum Concentration of Contaminants in Seal Beach NWR Fish Sheet 2 of 3

	Tops	melt	Deep Anch	• •		thern hovy	G	oby	Kii	lifish		mond rbot	Queenfish	
Chemical ^a	Np	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.
ORGANICS (m		1		30		000.		00.101		00		000.	•••	
1,1-Biphenyl	1/10	0.02												
4,4'-DDD	6/35	0.08	11/11	0.08	3/5	0.03	2/4	0.02	1/4	0.02			1/1	0.03
4,4'-DDE	35/35	0.53	11/11	1.58	5/5	0.58	4/4	0.31	4/4	0.14	1/1	0.04	1/1	0.21
o,p'-DDE			1/11	0.02										
4,4'-DDT	1/35	0.02	9/11	0.04										
delta-BHC	1/35	0.01												
C1-Naphthale nes	2/37	0.01												
C2-Naphthale nes	1/37	0.01												
C3-Fluorenes	2/37	0.04			1/5	0.02								
C3-Naphthale nes	1/37	0.01	1/11	0.03										
C3-Phenanthr enes and		-			1/5	0.02								
Anthracenes													<u> </u>	
C4-Naphthale nes			1/11	0.03										
cis-Nonachlor	1/35	0.02	3/11	0.03										
trans- Nonachlor	1/35	0.02	10/11	0.04	1/5	0.01	1/4	0.02						
Naphthalene	1/37	0.01									-			
PCB-1254	19/35	0.44	10/11	0.73	4/5	0.06	3/4	0.15	3/4	0.10	1/1	0.02	1/1	0.05

Table 7 Frequency of Detection and Maximum Concentration of Contaminants in Seal Beach NWR Fish Sheet 3 of 3

	Topsmelt		Deepbody Anchovy		Northern Anchovy		Goby		Killifish		Diamond Turbot		Queenfish	
Chemical ^a	Np	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.	N	Max. Conc.
PCB-1260	1/35	0.02		0.02	1/5	0.02								
PCB-TOTAL	11/35	0.46	10/11	0.74	4/5	0.08	3/4	0.15	3/4	0.10	1/1	0.02	1/1	0.0

^aOnly those chemicals detected in these samples are listed.

^bN = Number with detectable concentration/number of samples analyzed.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 8 Geometric Mean Concentrations of Contaminants in Seal Beach NWR Fish

Sheet 1 of 2

	Species							
Chemical ^a	Topsmelt	Deepbody Anchovy	Northern Anchovy	Goby	Killifish	Diamond Turbot	Queenfish	All Species
INORGANICS (mg/kg	g, dry weight	t)		···				
Aluminum	929.5	171.6	433.8	360.9	254.2	387.1	159.5	534.3
Arsenic	2.09	2.28	3.35	2.53	2.00	1.83	2.50	2.22
Barium	5.97	1.19	2.30	2.60	3.68	3.17	1.82	3.54
Boron	15.71	16.63	11.76	13.25	12.95	9.13	24.28	14.61
Cadmium	NC	NC	NC	NC	NC	NC	NC	NC
Chromium	14.01	4.10	4.45	6.75	7.87	27.55	5.61	10.10
Copper	7.64	2.71	4.56	4.35	10.34	4.45	3.66	5.91
Iron	1,021	207.5	498.0	425.7	339.7	533.5	176.7	614.0
Lead	1.19	0.26	0.36	0.64	NC	NC	NC	0.74
Magnesium	3,118	2,227	2,789	2,110	2,444	2,246	2,704	2,726
Manganese	28.15	14.64	20.86	31.96	32.52	54.67	22.75	26.03
Mercury	NC	0.16	NC	NC	NC	NC	NC	NC
Molybdenum	NC	NC	NC	NC	NC	NC	NC	NC
Nickel	9.58	NC	NC	4.54	4.47	17.61	2.84	5.10
Selenium	1.18	1.24	1.29	1.50	1.24	1.66	1.04	1.24
Strontium	114.6	51.69	76.86	46.02	273.4	137.00	158.2	97.34
Vanadium	5.96	NC	NC	NC	NC	4.22	NC	3.74
Zinc	120.3	97.82	80.00	85.18	103.3	84.45	75.30	105.3

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 8 Geometric Mean Concentrations of Contaminants in Seal Beach NWR Fish

Sheet 2 of 2

				Species				
Chemical ^a	Topsmelt	Deepbody Anchovy	Northern Anchovy	Goby	Killifish	Diamond Turbot	Queenfish	All Species
ORGANICS (mg/kg,	wet weight)		·····				•	
1,1 Biphenyl	NC	NC	NC	NC	NC	NC	NC	NC
4,4'-DDD	NC	0.05	0.01	0.02	NC	NC	0.03	0.02
4,4'-DDE	0.13	0.61	0.23	0.14	0.09	0.04	0.21	0.18
o,p'-DDE	NC	NC	NC	NC	NC	NC	NC	NC
4,4'-DDT	NC	0.02	NC	NC	NC	NC	NC	NC
BHC-delta	NC	NC	NC	NC	NC	NC	NC	NC
C1-Naphthalenes	NC	NC	NC	NC	NC	NC	NC	NC
C2-Naphthalenes	NC	NC	NC	NC	NC	NC	NC	NC
C3-Fluorenes	NC	NC	NC	NC	NC	NC	NC	NC
C3-Naphthalenes	NC	NC	NC	NC	NC	NC	NC	NC
C3-Phenanthrenes and Anthracenes	NC	NC	0.02	NC	NC	NC	NC	NC
C4-Naphthalenes	NC	NC	NC	NC	NC	NC	NC	NC
cis-Nonachlor	NC	NC	NC	NC	NC	NC	NC	NC
trans-Nonachlor	NC	0.03	NC	NC	NC	NC	NC	NC
Naphthalene	NC	NC	NC	NC	NC	NC	NC	NC
PCB-1254	0.04	0.15	0.04	0.09	0.03	0.02	0.05	0.05
PCB-1260	NC	NC	NC	NC	NC	NC	NC	NC
PCB-TOTAL	0.04	0.17	0.04	0.09	0.04	0.02	0.05	0.05
NC = Geometric Me	ean not compu	uted because	detected co	ncentration o	ccurred in les	s than half	the samples.	

Microtox® Bioassays

Sediment with an EC₅₀ (effective concentration at which the test organism's light output is decreased by 50 percent) of greater than 20,000 ppm (by sediment weight) is considered nontoxic. The closer the sample concentration is to zero, the more toxic the sediment. Using this criterion, all the tested sediments were toxic, and only those from Sample Locations C-1, G-1, and H-1 had values greater than 10,000 ppm, as shown in Table 9. Sediments from four locations (C-3, C-4, B-1, and B-2) had EC₅₀ values lower than 1,000 ppm, indicating that they were the most toxic. Other stations were in the intermediate range of toxicity. Statistical comparisons (using correlations) were used to test relationships between the Microtox® bioassay results and analytical results for sediments (both of which were converted to logarithms for statistical testing because of the distribution of values). The highest correlation was between toxicity and acid volatile sulfide (R square = 0.723; Figure 4). Although there also was a significant correlation between toxicity and a few metals (zinc, copper, chromium, and nickel) or 4,4'-DDE, those relationships were much weaker than the one with sulfide, as indicated in Table 10.

Among the four metals that were statistically correlated with toxicity, molar concentrations of sulfide always exceeded the molar concentration of metals, except for that of zinc at sample locations A-1, C-1, and C-2. (When molar concentrations of sulfide exceed those of metals, the metals are probably not toxic to benthic biota.) These three sample locations were among those with intermediate or low toxicity as measured by the Microtox® bioassays.

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

Thus, it is likely that the bioassay results were affected most strongly by the sulfides which

occur naturally in the sediment rather than the organic or inorganic contaminants of

concern.

Least Tern Eggs

Concentrations of metals and organic chemicals detected in the least tern eggs are

presented in Table 11. Eight inorganics were measurable in all eggs analyzed for them.

whereas six other inorganics were found only in three or fewer eggs. Comparisons of

geometric means for the eight inorganics between years (1991 and 1993) indicate that only

manganese and strontium were different between years (t-test, P<.05). However, the two

inorganic analytes showed opposite trends over time (Table 11).

DDE and PCBs were the only organic chemicals found at measurable levels in the eggs,

and both DDE and PCB-1254 occurred at measurable levels in all eggs. Comparisons of

geometric means for these two chemicals indicate that 4,4'-DDE was in higher

concentration in least tern eggs in 1993 than in 1991 (t-test, P<.05) while other analytes

indicated no differences between years.

SCO100217E0.WP5\95

D-58

Table 9 Ranking of EC ₅₀ Values for Sediments in Bioassays					
Group No. ^a	Station No.	EC ₅₀ (ppm)			
1	H-1 C-1 G-1	16,743 13,622 11,340			
2	C-2 D-2 G-2 F-1 D-1	5,483 5,036 4,886 3,832 3,366			
3	F-3 D-3 A-1 E-4 F-5 E-1 E-3	2,776 2,295 2,270 2,158 1,894 1,851 1,690			
4	G-3 F-2 E-2 F-4	1,484 1,282 1,054 1,014			
5	B-2 B-1 C-4 C-3	937 734 468 395			

^aResults are listed in ranked order and divided into the following subjectively defined groups (range in ppm): Group 1: 10,001-20,000; Group 2: 3,001-10,000; Group 3: 1,501-3,000; Group 4: 1,001-1,500; Group 5: 0-1,000.

Note: EC_{50} = Effective concentration at which the test organism's light output is decreased by 50 percent. (The closer the sample concentration is to zero, the more toxic the sediment, and values greater than 20,000 ppm are considered non-toxic.)

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 10
Relationship Between Toxicity Measured
by Microtox® and Various Analytes

Analyte	R Square	Probability
Acid volatile sulfide	0.723	<0.0001
Zinc	0.394	<0.0014
Copper	0.297	<0.0072
Chromium	0.208	<0.0286
Nickel	0.172	<0.0494
Arsenic	0.022	<0.502
Lead	<0.001	>0.99
4,4'-DDE ^a	0.197	<0.0338

^aRelationship highly dependent on a single high value for DDE.

Note: All analytes and toxicity values (EC₅₀) converted to logarithms.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Table 11
Inorganic and Organic Chemicals Found in Least Tern Eggs
Salvaged at Seal Beach NWR

	Measurable Concentrations ^a				
Chemical	Chemical N Geometric Mea		Maximum		
Inorganics (N=9)					
Aluminum	1	NCp	12.2		
Arsenic	3	NC	0.735		
Beryllium	2	NC NC	0.26		
Boron	9	8.37	21.8		
Cadmium	2	NC	0.13		
Copper	9	3.09	4.76		
Iron	9	133	165.		
Magnesium	9	455	555.		
Manganese	9	Overall = 2.23 1991 = 2.02 1993 = 2.71	3.07		
Mercury	9	0.82	1.26		
Molybdenum	1	NC	2.32		
Selenium	3	NC	2.71		
Strontium	9	Overall = 4.17 1991 = 5.11 1993 = 2.77	6.36		
Zinc	9	61.5	72.8		
Organics (N = 11)					
4,4'-DDE	11	Overall = 3.65 1991 = 1.96 1993 = 5.19	6.98		
PCB-1254	11	(0.99)	(2.03)		
PCB-1260	1	NC	(0.25)		
PCB-Total	11	(1.11)	(2.28)		

^aN = Number of samples with measurable concentrations. Inorganics reported as mg/kg dry weight; organics at mg/kg wet weight. Chemicals not listed were not measurable in any samples. Values shown in parentheses were estimated on the basis of moisture and lipid levels in the eggs.

NC = Not completed because chemical was measurable in less than half the samples.

Note: Means in different years are shown only for those analytes with statistically different means between years (t-test, P<.05)

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Figure 4
Relationship Between Toxicity as Measured by Microtox and Acid-volatile Sulfide in Seal Beach NWR sediment

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

DISCUSSION

Chemicals of Concern

Exposure of birds to environmental contaminants can be assessed by measuring concentrations in their food, water, air, or body tissues (Ohlendorf et al., 1978; Ohlendorf, 1993). For the current study, the most directly applicable values are those for dietary exposure that are summarized in the USFWS Contaminant Hazard Reviews published by Eisler (1985 through 1993). Assessment values for inorganics available from that source, as well as those provided by Puls (1988) and the National Academy of Sciences (NAS) (NAS, 1980) are presented in Table 12. Except for cadmium, copper, and lead levels given by Puls (1988), all values from that source and all those from NAS (1980) are based on poultry.

Effect levels in wild birds for many chemicals, and especially in environmentally realistic chemical forms and concentrations, have not been clearly established. For example, Eisler (1985a) states for cadmium that "until other data become available, wildlife dietary levels exceeding 100 μ g Cd/kg fresh weight on a sustained basis should be viewed with caution." However, feeding studies with mallards (*Anas platyrhyncos*) indicated that diets containing 200 mg Cd/kg produced no obvious deleterious effects after 13 weeks, although cadmium had accumulated to high levels in the ducks' kidneys. Species differences in sensitivity to various chemicals measured in the current study are unknown. Therefore, the values used for assessment of analytical results are generally the more conservative ones. The

CLE-C01-01F237-\$2-0001

Version: Final Revision: 0

endandgered least tern and clapper rail are the species of special interest for the Wildlife

Refuge Study. Assessment of the potential toxicity of contaminants of concern in the NWR

has been evaluated based on collected food chain species eaten by these birds, but

applies to other species with comparable diets.

Inorganic Contaminants

Aluminum. The chronic toxicity of aluminum is low (Scheuhammer, 1987), and like many of

the other inorganics, its toxicity depends greatly on the chemical form found in the diet.

Toxicity of aluminum also depends on the dietary levels of other elements (e.g., calcium and

phosphorus) available to the birds. As noted in Table 12, the maximum tolerable level

(MTL) for aluminum given by NAS (1980) is based on soluble salts of high bioavailability,

but higher levels of less soluble forms found in natural substances can be tolerated.

Because of its expected low toxicity to birds, aluminum is not considered a chemical of

concern (COC) for clapper rails and least terns at the NWR.

Arsenic. Arsenic consistently occurred in invertebrates and fish collected in the NWR at

concentrations that were much lower than the maximum dietary levels considered

acceptable for birds (Tables 3, 6, and 12). Thus, arsenic is not considered a COC for

clapper rails and least terns at the NWR.

\$CO100217E0.WP5\95

D-68

0

Table 12 Assessment Values for Concentrations of Inorganics (mg/kg) in Bird Diets

Sheet 1 of 2

	Reference/Sources						
			Puls ^b				
Element	Eisler ^a Acceptable	Normal/Adequate	High	Toxic	_ of Sciences ^c Maximum Tolerable Level		
Aluminum	NA	<500	NA	>1,500	200 ^d		
Arsenic ^e	<100 DW ^f	100 ^f	NA	NA	100 ^f		
Barium	NA	NA	NA	NA	(20) ^d		
Boron	<13 FW	NA	NA	NA	(150)		
Cadmium	<0.1 FW	<5	10 - 20	>20	0.5 ⁹		
Chromium	<10 DW	5 - 20	NA	>300	1,000		
Copper	NA	10 - 50	100 - 200	>200	300		
Iron	NA	80	NA	200 - 2,000	1,000		
Lead	<10 DW	NA	25 ^h	NA	30 ^g		
Magnesium	NA	600 - 3,000	3,000 - 9,000	6,400 - 12,800	(3,000)		
Manganese	NA	60 - 200	1,000 - 4,000	>4,000	2,000		
Mercury	<0.1 FW	<0.1	1 - 50	5 - 100	29		
Molybdenum	<200 DW	0.03 - 1.0	3 - 10	>200	100		
Nickel	NA	0.1 - 3.0	100 - 300	700 - 1,000	300		

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Revision: 0

Table 12 Assessment Values for Concentrations of Inorganics (mg/kg) in Bird Diets

Sheet 2 of 2

	Reference/Sources						
		National Academy of Sciences ^C					
Element	Eisler ^a Acceptable	Normal/Adequate	High	Toxic	Maximum Tolerable Level		
Selenium	<6 DW ⁱ	0.3 - 1.1	3 - 5	>5	2		
Silver	NA	10 - 100	100	NA	100		
Strontium	NA	NA	NA .	>3,000	3,000		
Vanadium	NA	0.1 - 3.0	6 - 50	100 - 800	10		
Zinc	<178 DW	98 - 200	800 - 2,000	>2,000	1,000		

^aEisler, 1985a, 1985b, 1986a, 1987a, 1988a, 1988b, 1989, 1990a, 1993.

DW = Dry weight FW = Fresh weight NA = Not available

^bPuls, 1988; all values given as DW for poultry or waterfowl (when available).

^CNAS, 1980; all values given as DW for poultry; values in parentheses were extrapolated from other species.

dAs soluble salts of high bioavailability. Higher levels of less soluble forms found in natural substances can be tolerated.

^eBased also on Phillips, 1990, and Stanley et al., in prep.

[†]Arsenic in organic form, which is less toxic than inorganic arsenic.

^gLevel based on human food residue considerations.

hMaximum no effect level for waterfowl.

Based also on Ohlendorf, 1989, and USDI, 1993.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

Barium. Barium is similar to aluminum in that the MTL given by NAS (1980) for poultry is

based on highly bioavailable soluble salts (Table 12). The maximum detected concen-

trations of barium in invertebrates and fish in the NWR were approximately equal to that

MTL. Because this barium is probably much less bioavailable than those inorganic forms,

barium is not considered a concern for clapper rails and least terns at the NWR.

Boron. Maximum concentrations of boron in algae, invertebrates, and fish were similar to

the maximum dietary concentrations considered acceptable for birds (Table 12). However,

these maximum detected concentrations also were similar to the geometric mean boron

concentrations found in aquatic plants, invertebrates, and fish at the Volta Wildlife Area

(located in the San Joaquin Valley; Schuler, 1987; Hothem and Ohlendorf, 1989), where

reproductive success of aquatic birds was normal (Ohlendorf et al., 1989). Therefore, boron

is not expected to cause adverse effects in clapper rails and least terns at the NWR.

Cadmium. Maximum concentrations of cadmium in invertebrates (0.5 mg/kg wet weight)

were slightly higher than the dietary level of concern put forth by Eisler (1985a), but the

maximum in fish was lower Cadmium does bioaccumulate in some bird tissues, based on

studies with mallards, but the threshold dietary levels for adverse effects are not well known

(White and Finley, 1978; White et al., 1978; Cain et al., 1983). Although cadmium at the

average levels found in invertebrates probably would not adversely affect birds that

consume invertebrates at the NWR, it is considered a COC because of its potential toxicity.

D-73

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Chromium. Chromium concentrations in invertebrates (Table 4) and fish (Table 7)

sometimes exceeded the dietary concentrations considered by Eisler (1986a) to be

acceptable for birds (Table 12). The geometric mean chromium concentrations in turbot

(27.5 mg/kg) and topsmelt (14.0 mg/kg), as well as all fish species combined (10.1 mg/kg)

(Table 8), were at or above that level, although most were within the normal/adequate range

for poultry (Puls, 1988) and all were below the MTL for poultry (NAS, 1980). Eisler (1986a)

also states, "...available evidence suggests that organs and tissues of fish and wildlife that

contain >4.0 mg total Cr/kg dry weight should be viewed as presumptive evidence of

chromium contamination." The geometric means for chromium in horned snails

(11.6 mg/kg) and saltmarsh snails (11.4 mg/kg) (Table 5) also slightly exceeded the

10 mg/kg value given by Eisler (Table 12). Thus, chromium is considered a COC for

clapper rails and least terns at the NWR.

Copper. The toxicological significance of copper in diets of wild birds is not clear, but

concentrations exceeding 200 or 300 mg/kg in poultry diets are considered toxic or

excessive (Table 12). Maximum copper concentrations in most invertebrates and fish were

in the normal/adequate range or between that and high dietary levels for poultry. However,

maximum copper concentrations in crabs were within the high range and those in ghost

shrimp exceeded the toxic and MTL values for poultry. Comparable values for ghost shrimp

from other areas are not available, but data for seabirds indicate that copper levels in bird

tissues are regulated (Furness and Rainbow, 1990) and toxicity is probably unlikely.

D-74

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

Therefore, direct toxicity of copper to clapper rails and least terns at the NWR is not

considered to be of concern.

Iron, Magnesium, Maganese. Iron, magnesium, and manganese are essential nutrients in

animal diets that have low toxicity to poultry (Table 12). Their occurrence in marine

ecosystems is largely the result of natural rather than anthropogenic causes, and

concentrations in bird tissues are physiologically regulated (Furness and Rainbow, 1990).

Thus, they are not considered COC for clapper rails and least terns at the NWR.

Lead. Lead concentrations in polychaetes (Table 4) reached levels several times higher

than those considered by Eisler (1988b) to be acceptable in bird diets, high for waterfowl

diets by Puls (1988), and the MTL for poultry (Table 12). Consequently, lead is considered

a COC.

Mercury. Mercury was seldom detected in biota samples, and the maximum concentration

was less than 0.5 mg/kg wet weight. This low level of mercury in the NWR biota is reflected

by the low concentrations found in clapper rail eggs analyzed separately by the USFWS

(Schwarzbach, 1994). Mercury is not a COC at the NWR.

Molybdenum. Molybdenum was not detectable in invertebrates and the concentrations

found in fish and algae were lower than those that are considered harmful for birds

(Table 12). Thus, molybdenum is not considered a COC.

D-75

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

Nickel. Nickel concentrations in invertebrates, algae, and fish were elevated in comparison

to the normal/adequate dietary range for poultry (Puls, 1988), although they were below the

high range and less than the MTL (Table 12). Data available for seabirds imply that the

birds do not metabolically regulate tissue concentrations of nickel (Furness and Rainbow,

1990), so it is considered a COC.

Selenium. Selenium concentrations in biological samples were below the dietary levels

associated with adverse effects in wild birds (Table 12). Research on selenium effects in

aquatic birds conducted by USFWS during the past 10 years suggests the concentrations

in invertebrates and fish at the NWR are unlikely to affect birds at the NWR, although

maximum concentrations sometimes exceed the MTL for poultry (Table 12). Consequently,

selenium is not a COC for clapper rails and least terns at the NWR.

Silver. Silver was rarely detectable in biota samples and concentrations were very low in

comparison to available assessment values (Table 12). Thus, it is not considered a COC at

the NWR.

Strontium. Strontium occurred at maximum concentrations in biota well below the levels

that are harmful to poultry (Table 12). No assessment values are available from the USFWS

Contaminant Hazard Reviews (Eisler, 1985 through 1993) or from Furness and Rainbow

(1990). Therefore, it is not considered a concern for clapper rails and least terns at the

NWR.

D-76

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Vanadium. Vanadium sometimes occurred in biota at concentrations considered high or

somewhat above the MTL for poultry (Table 12). However, assessment values for vanadium

in the diets of wild birds are not available. It is an essential element for marine organisms,

and they have evolved mechanisms to sequester, transport, and use the vanadium to which

they are exposed (Furness and Rainbow, 1990). Although the assimilative capacity of the

system can be overloaded by localized excessive levels, effects are not easily

demonstrated. When vanadium was fed to mallards at 100 mg/kg for 12 weeks, there was

no apparent effect on their health (White and Dieter, 1978). Lipid metabolism of laying hens

receiving the treated diet was altered, but their body weights were comparable to controls

and they appeared healthy throughout the study. Hence, vanadium is not considered a

concern for clapper rails and least terns at the NWR.

Zinc. Zinc occurred at highest concentrations (up to 542 mg/kg) in saltmarsh snails

(Table 4). This concentration exceeds the normal/adequate range given by Puls (1988) and

that listed by Eisler (1993) as "excessive" for poultry. All other samples had zinc

concentrations in the normal/adequate range for poultry. Dietary concentrations for zinc-

poisoned mallards were 2,500 to 3,000 mg/kg (Eisler, 1993), which is similar to toxic levels

for poultry (Table 12). It is unknown whether the zinc concentrations found in saltmarsh

snails are typical for that species elsewhere, but the concentrations in saltmarsh snails were

several times higher than those in horned snails. This suggests that saltmarsh snails may

naturally have higher tissue concentrations than the other sampled species. As with

copper, zinc is an essential element for marine organisms and levels are likely to be closely

D-77

Revision: 0

regulated (Furness and Rainbow, 1990). Although the concentrations found in food-chain

biota are probably not toxic to birds at the NWR, zinc is considered as a COC because of

its possible relationship to toxicity as indicated by the Microtox® bioassay.

Organic Contaminants

Pesticides, PCBs, and PAHs. Organochlorine contaminants such as DDT and its

metabolites (primarily DDE and DDD), PCBs, and chlordane have a tendency to

bioaccumulate to high levels in birds that consume contaminated organisms (Stickel, 1973;

Ohlendorf et al., 1978; Eisler, 1986b, 1990b). In contrast, PAHs generally show little

tendency to bioaccumulate in food chains, despite their high lipid solubility, probably

because most PAHs are rapidly metabolized (Eisler, 1987b). Based on the frequency of

occurrence, maximum and mean concentrations, potential to bioaccumulate, and known

effects of these various organics in birds, DDE is the chemical considered most likely to

cause potential effects in birds at the NWR.

Dietary concentrations used for assessment of some organic contaminants also are

provided by Eisler (1986b, 1990b) and by other reviews (Stickel, 1973; Ohlendorf et al.,

1978), although effect levels in clapper rails and least terns are not known. In general,

dietary concentrations of 3 mg/kg (fresh weight) of either DDE or PCBs are considered to

cause adverse effects in birds. Dietary concentrations up to 0.3 mg/kg (fresh weight) total

chlordane are considered acceptable. Acute and chronic toxicity effects on birds exposed

D-78

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

to PAHs in their diet are very limited (Eisler, 1987b). When mallards were fed diets

containing 4,000 mg PAHs/kg (mostly as naphthalenes, naphthenes, and phenanthrene) for

a period of 7 months, no mortality or visible signs of toxicity were observed, but the birds

did show physiological responses (including 25 percent larger livers than controls).

The USFWS has periodically determined concentrations of selected inorganic and

organochlorine chemicals in freshwater fish collected from a nationwide network of stations

as part of the National Contaminant Biomonitoring Program (NCBP) (Schmitt and

Brumbaugh, 1990; Schmitt et al., 1990). Chemical concentrations in the NCBP are typically

reported on a wet-weight basis. Average moisture content of the fish is about 75 percent;

thus, wet-weight concentrations can be converted to approximate dry-weight concentrations

through multiplying by a factor of 4. Results of the most recently published NCBP survey

are summarized in Table 13 for comparison with results from the NWR.

Comparing the concentrations of various chemicals in fish from the NWR with those found

in the NCBP (Table 13) suggests that cadmium, mercury, selenium, DDD, DDT, PCBs, cis-

nonachlor, and trans-nonachlor concentrations are similar. Such a comparison also shows

that copper, lead, and zinc maximum concentrations in at least some fish species from the

NWR exceed the NCBP 85th percentile values and geometric means exceed the NCBP

geometric means. Therefore, these three metals are potentially present at levels above

background and retained as COCs. Schmitt et al. (1990) do not provide 85th percentile

values for fish in the NCBP, but the geometric mean DDE concentrations in deepbody

D-79

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

anchovy, northern anchovy, and queenfish are equal to the NCBP geometric mean or

higher than that value. Although arsenic concentrations in fish from the NWR are higher

than the NCBP values, this is not unexpected. Marine organisms normally contain arsenic

concentrations of several to more than 100 mg/kg dry weight, but these levels present little

hazard to the organism or its consumers (Eisler, 1988a).

The National Academy of Sciences (NAS) has established recommended maximum

concentrations of certain toxic substances in freshwater fish tissue to protect the fish

containing those chemicals, as well as to protect animals that consume the contaminated

fish (NAS, 1973). These recommended guidelines are presented in Table 14. Additional

criteria or standards have been published by the Food and Agriculture Organization of the

United Nations (Nauen, 1983) and by the U.S. Food and Drug Administration (USFDA.

1984). However, those values are for contaminant concentrations in edible portions of fish

and are not directly applicable to the (whole-body) results or purposes of this study.

Maximum detected concentrations of mercury, total chlordane, and total BHC in fish from

the NWR were less than the NAS guideline levels for whole fish. Maximum concentrations

of total DDT and total PCBs exceeded the recommended guidelines in Table 14.

Contaminant concentrations in fish and in mussels from California waters are measured

periodically through the Toxic Substances Monitoring Program (TSMP) or the California

State Mussel Watch (CSMW) (Phillips, 1988; Rasmussen, 1992). Those programs use

D-80

Revision: 0

Table 13

Geometric Mean Concentrations (mg/kg wet weight), 85th Percentile (for Inorganics) and Maximum Concentrations Found Nationwide in Freshwater Fish by the National Contaminant Biomonitoring Program, 1984

Chemical	Geometric Mean	85th Percentile	Maximum Concentration
Inorganic ^a			
Arsenic	0.14	0.27	1.50
Cadmium	0.03	0.05	0.22
Copper	0.65	1.0	23.1
Lead	0.11	0.22	4.88
Mercury	0.10	0.17	0.37
Selenium	0.42	0.73	2.30
Zinc	21.7	34.2	118.4
Organics ^b			
4,4'-DDE	0.19		4.74
4,4'-DDD	0.06		2.55
4,4'-DDT	0.03		1.79
PCB 1254	0.21		4.0
PCB 1260	0.15		2.3
cis-Nonachlor	0.02		0.45
trans-Nonachlor	0.03		1.0

^aSchmitt and Brumbaugh, 1990; average moisture content of fish was about 75% (thus, wet-weight concentrations can be converted to approximate dry-weight concentrations by multiplying by 4). bSchmitt et al., 1990; only those chemicals detected in fish at Seal Beach NWR are

included.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Revision: 0

Table 14						
NAS Guideline Lev	els for Toxic Che	micals in Whole Fish				
	(mg/kg wet weigl	nt)				

<u> </u>	
Chemical	NAS ^a Recommended Guideline for Freshwater Fish
Mercury	0.5
DDT (total)	1.0
PCB (total)	0.5
Chlordane (total)	0.1 ^b
Benzene hexachloride (total)	0.1 ^b

^aNAS, 1973. ^bIndividually or in combination, including various isomers and component chemicals.

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

"elevated data levels" (EDLs) as internal comparative measures that rank a given

concentration of a particular substance with previous data from the TSMP or CSMW. The

EDLs are calculated by ranking all of the results for a given chemical from the highest

concentration to the lowest concentration measured (including those not detected). From

this, a cumulative distribution is constructed and percentile rankings are calculated. The

85th percentile (EDL 85) is used as an indication that a chemical is elevated from the

median. EDL 85 values for selected organisms and chemicals of interest in the NWR study

are shown in Table 15. Although species sampled at the NWR are different from those

sampled in the TSMP and CSMW, the EDL 85 values are useful for evaluating results from

the NWR. Data for marine fish sampled in the TSMP are inadequate for calculation of EDL

values in whole fish, but values are available for freshwater fish.

Comparing concentrations of chemicals detected in fish from the NWR with those from the

TSMP indicates that concentrations of cadmium, mercury, selenium, DDE, DDD, DDT, cis-

nonachlor, trans-nonachlor, BHC, and hexachlorobenzene concentrations at the NWR are

not unusual (as are those for arsenic as noted above in comparison to freshwater fish in the

NCBP). Concentrations of chromium, copper, lead, nickel, zinc, and PCBs in fish at the

NWR appear elevated in comparing the maximum detected concentrations there with EDL

85 values from the TSMP. Values presented in Table 15 from the CSMW will be discussed

later in Other Studies in comparison to results of CSMW sampling in Anaheim Bay.

D-85

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

In summary, the following chemicals appear to be elevated in invertebrates or fish from the NWR in comparison to various toxicological effect values or reference values:

- o Cadmium
- o Chromium
- o Copper
- o Lead
- o Nickel
- o Zinc
- o DDE
- o PCBs

These chemicals, therefore, are identified as being of concern for possible effects in clapper rails and least terms at the NWR.

Spatial Patterns

Overall patterns in the occurrence of various COCs (six inorganics, two organics) were examined by comparing the locations where they occurred at highest concentrations in the most widely collected species. Those species included horned snails, saltmarsh snails, striped shore crabs, and topsmelt. Although topsmelt were not collected at each of the 23 sample locations, they were collected at least once at nine sample locations and at least

Table 15

Elevated Data Levels (EDL 85s) for Inorganic and Organic Chemicals in the Toxic Substances Monitoring Program (TSMP) and California State Mussel Watch (CSMW)

	TSMP	CSMWb
Chemical	Freshwater Fish	California Mussels
Inorganics		
Aluminum	NA	662.8
Arsenic	0.48	23.82
Cadmium	0.10	10.83
Chromium	0.20	3.93
Copper	3.28	21.85
Lead	0.28	11.01
Manganese	NA	34.23
Mercury	0.07	0.44
Nickel	0.20	5.30
Selenium	1.50	4.48
Silver	0.03	0.70
Zinc	35.0	336.3
Organics		
4,4'-DDE	2,295.0	NA
4,4'-DDD	386.0	NA
4,4'-DDT	193.0	85.5
Total DDT	3,704.0	1,483.0
PCB 1254	175.0	1,420.0
PCB 1260	110.0	LT
Total PCB	281.5	1,420.0
cis-Nonachlor	20.6	NA
trans-Nonachlor	55.7	NA
Total Chlordane	171.7	192.4
delta-Benzene hexachloride	<5.0	LT
Hexachlorobenzene	7.3	0.17

^aRasmussen, 1992; values for inorganics are mg/kg wet weight in whole fish, those for organics μ g/kg wet weight.

ID = Insufficient data to calculate an EDL

LT = EDL is less than the detection limit

NA = Not available

^bPhillips, 1988; values are mg/kg dry weight for inorganics, μ g/kg dry weight for organics.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

3 times in each of the POLB mitigation ponds, as shown in Figure 5. Topsmelt also are

more mobile than are the invertebrates sampled in this study, so they may not be as

reliable indicators of locations-specific exposure. Nevertheless, the evaluation did indicate

that topsmelt often had highest concentrations of contaminants at the same general

locations where some of the invertebrates had highest levels.

The three locations for each species where concentrations of selected contaminants were

highest were listed in Table 6. The sample locations that did not show top concentrations

for any inorganic chemicals (C-3, C-4, F-3, and F-4) are not located near Oil Island or other

RI sites, or Huntington Harbour.

The areas that most often had among the highest concentrations of inorganics were sample

locations B-1 and C-1, E-4, G-3, and the combined area of sample location F-5 and Pond 3

(Table 6). Sample location G-2 had highest concentrations of lead in both horned and

saltmarsh snails. Inorganics in horned snails from sample location D-2 were often among

the five highest concentrations for that species. The crabs from sample location H-1 often

had among the five highest chemical concentrations for that species (Appendix B), but were

among the three highest only for copper (Table 6). However, horned and saltmarsh snails

from sample location H-1 were seldom found to have the highest concentrations for

inorganic chemicals.

D-89

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Within species, the following sample locations were areas where inorganic concentrations were generally higher:

- o Horned snails-D-2, D-3 and B-1
- o Saltmarsh snails-G-3 and E-4
- o Shore crabs-B-1, F-5, and E-4
- o Topsmelt—Pond 3

Although the highest and second-highest concentrations of inorganics within a particular species sometimes occurred at adjacent or nearby sample locations (for example, zinc in horned snails from sample locations D-2 and D-3, or lead in that species from sample locations G-2 and H-1), this was unusual. Most often the spatial patterns within species were unclear and it was more useful to consider the patterns for all invertebrate species combined with topsmelt. In doing so, concentrations for each metal appear to be generally higher at the following areas (because invertebrates and fish often were not collected at the same sample locations, ponds are combined with adjacent sample locations):

- o Cadmium—A-1 and Pond 2, B-1, C-1, F-5 and Pond 3
- o Chromium—B-1, E-1, E-4, and Pond 3
- o Copper-E-4, F-5 and Pond 3, G-3
- o Lead—E-4, F-1, G-2, Pond 3
- o Nickel-No particular pattern

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

0

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Zinc—F-5 and Pond 3 (otherwise, widely scattered sample locations)

Comparing the invertebrate patterns with those observed in the NWR sediments, the

strongest similarities occur for the general area of sample location B-1 where metals such

as cadmium, chromium, copper, and lead were generally elevated. However, the only

statistically significant relationship by sample location between sediment and biota metals

was for chromium in saltmarsh snails (P<0.05). Although the chromium relationship is

statistically significant, only a small portion of the variation in saltmarsh snail chromium can

be explained by variation in sediment chromium $(r^2=0.2)$.

Among the two organic COCs, spatial patterns were more evident for DDE than for PCBs.

Higher concentrations of DDE occurred in POLB Ponds 1 and 2 fish and in sample

locations A-1 and B-1 invertebrates than elsewhere (Table 6). When DDE concentrations in

sediments were normalized for total organic carbon concentration (a standardization for

bioavailability; see Heinle draft technical memorandum), they were highest at sample

locations B-1 and H-1, and significantly correlated to variation in concentrations in crabs

 $(P<0.01, r^2=0.9).$

PCBs were not detected as frequently as DDE and there were fewer similarities among

species in which the highest concentrations occurred. Although both horned and saltmarsh

snails from sample location E-3 had highest PCB concentrations for those species, the

second highest levels for horned and saltmarsh snails and the highest concentrations for

D-93

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

crabs and topsmelt were spatially disjunct (at F-1 and B-2, and D-1 and Pond 4,

respectively). Sample location F-1 was the only other location where two species had

concentrations among the five highest for two species (horned snail and saltmarsh snail).

PCBs in sediments were detected only at sample location C-3, which was not among the

highest sample locations for snails, crabs, or topsmelt.

Bird Eggs

Bird eggs can be good indicators of previous or current exposure of the female that laid

them to some inorganics (such as mercury and selenium) and to organochlorines

(Ohlendorf et al., 1978; Ohlendorf, 1993). However, for some chemicals of potential

concern at the NWR (such as cadmium and lead), there is little relationship between the

female's dietary exposure and the concentrations found in the eggs. Furthermore, some

chemicals (including mercury and organochlorines) that are excreted into eggs may

represent body burdens accumulated by the female over long periods (including exposure

in previous years and in overwintering locations). Taking these various factors into

consideration leads to the following conclusions:

Inorganics for which interpretive guidelines are available generally occurred at

background levels, except that of mercury, which exceeded 1 mg/kg in one egg

collected during 1993.

D-94

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

o DDE occurred in some eggs (especially during 1993) at levels associated with

impaired reproduction in sensitive species (although effect levels in least terns are

not well known).

o Concentrations of PCBs in all eggs were less than the concentration (<16 mg/kg

fresh weight) recommended by Eisler (1986b) as a proposed criterion for protection

of birds.

Mercury concentrations in the least tern eggs were similar to or lower than those in

Forster's tern (Sterna forsteri) and Caspian tern (Sterna caspia) eggs from San Francisco

Bay (Ohlendorf et al., 1988). Lowered hatching success and a reduced fledging rate in

common terns (Sterna hirundo) were associated with mercury concentrations between 1.0

and 3.6 mg/kg (wet weight; Connors et al., 1975), whereas herring gulls (Larus argentatus)

were apparently not affected when eggs contained 2 to 16 mg/kg mercury (wet weight;

Vermeer et al., 1973). Mallard (Anas platyrhynchos) reproductive success was reduced

when eggs contained about 0.85 mg/kg mercury (fresh weight; Heinz, 1979).

Some species of birds, such as the brown pelican (Pelecanus occidentalis), are especially

sensitive to adverse effects of DDE on reproductive success (Elliott and Noble, 1993).

Terns appear to be intermediate among avian species in their sensitivity to DDE. More than

25 percent of eggs laid by Caspian terns breeding in San Diego Bay in 1981 failed to hatch,

or died during piping (Ohlendorf et al., 1985). Although DDE residues in eggs averaged 9.3

SC0100217E0.WP5\95 D-95

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

mg/kg (wet weight) and were inversely correlated with eggshell thickness, residues were not

significantly related to hatching success. In the Great Lakes, common tern populations

declined during the 1970s, and there is some evidence that organochlorine contaminants

were one factor that reduced reproductive success (Weseloh et al., 1989). By 1981, DDE

concentrations in eggs had declined substantially and seemed no longer to be an important

factor in the population dynamics of common terns on the Great Lakes. Geometric mean

DDE concentrations in some colonies were 10 to 13 mg/kg (wet weight) during 1972, and

they had declined to 2.5 mg/kg or less in those colonies by 1981.

The USFWS also analyzed samples of addled least tern eggs salvaged from colonies in San

Francisco Bay and San Diego Bay during the mid-1980s (D.L. Roster, USFWS, personal

communication). The samples from the 1980s included 43 eggs analyzed for mercury and

selenium (12 samples from San Francisco Bay, 17 samples from San Diego Bay), and 42

eggs analyzed for organochlorines (13 samples from San Francisco Bay, 18 samples from

San Diego Bay; as at the NWR, eggs were sometimes composited because they were small

and some samples were analyzed for both inorganics and organics, but not all). Although

results of those analyses have not been compared statistically to the results for NWR eggs,

some general comparisons can be made.

None of the least tern eggs from San Francisco Bay had less than 1 mg/kg mercury, and

concentrations ranged up to 3.2 mg/kg (D.L. Roster, USFWS, personal communication). In

contrast, more of the eggs (almost half) from San Diego Bay had less than 1 mg/kg

D-96

Revision: 0

mercury, and mercury concentrations ranged up to 2.3 mg/kg. DDE concentrations in eggs from San Francisco Bay were 0.54 to 1.83 mg/kg (fresh wet weight); those from San Diego Bay were less than 2.0 mg/kg except for one egg from North Island with 1.67 mg/kg. Without more detailed verification of sample handling and the basis for reporting contaminant concentrations in the various samples, the results for least tern eggs indicate generally that mercury and DDE concentrations at the NWR are not unusual. Mercury concentrations seem comparable to those found in eggs at San Diego Bay (and lower than those found in San Francisco Bay), and DDE concentrations are more similar to those found in San Francisco Bay (although apparently higher than those found at San Diego Bay).

During 1991, the USFWS collected eight clapper rail eggs at the NWR and analyzed five of them for inorganic and three for organic contaminants (S.L. Goodbred, USFWS, personal communication). Cadmium and lead were below the detection limit (0.5mg/kg dry weight) and other metals occurred at relatively low concentrations. Although background levels for metals in clapper rail eggs are not well known, geometric means were 1.16 mg chromium/kg, 2.5 mg copper/kg, 0.07 mg mercury/kg, and 49.6 mg zinc/kg. The low range of values for mercury (<0.1 to 0.12 mg/kg) indicates that concentrations in the NWR food chain are low. By comparison, mercury concentrations in 51 California clapper rail eggs salvaged from San Francisco Bay in 1986 and 1992 averaged about 0.6 mg/kg fresh wet weight (or about 1.8 mg/kg dry weight (S.E. Schwartzbach, USFWS, personal communication). Similarly, the concentrations of DDE in clapper rail eggs from the NWR

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

were below 1.0 mg/kg (0.31, 0.34, and 0.89 mg/kg wet weight, not corrected for moisture

loss, so fresh wet-weight concentrations would be still lower).

Other organochlorines (such as trans-nonachlor and PCBs), as well as PAHs (such as

pyrene and phenanthrene), occurred only at concentrations lower than 0.5 mg/kg and 0.1

mg/kg, respectively.

It appears that contaminants such as the mercury and DDE found in least tern eggs

probably reflects exposure outside of the NWR. However, DDE in fish at the NWR does

represent a concern for least terns feeding upon them because reproductive success could

be adversely affected.

It is important to note that least tern egg samples collected from the NWR represent a

biased sample of the population because all these eggs were collected when they had

failed to hatch.

Other Studies

Several other studies that have been or are currently being conducted at or near the NWR

provide useful information for interpreting the NWR study results. COCs from the soil,

surface water, and groundwater sampling locations of Operable Units (OUs) 4, 5, 6, and 7

that border on the NWR sample locations stations are listed in Appendix C. Those OU 4

D-98

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

sites of concern, because of their proximity to the NWR, includes Site 5, along the Kitts

Highway, and Sites 6, 23, 35, and 38 due to their proximity to POLB ponds. Slightly

elevated levels of copper, lead, mercury, nickel, and zinc were detected in soils from Site 5,

which is near NWR sampling locations B-1 and C-1 (Figure 6). They are listed as COCs

because of the proximity of Site 5 to the NWR tidal channels. Analytical results from

Sites 6, 23, 35, and 38 did not reveal COCs with regard to exposure in NWR locations

(Navy, 1993).

All of the OU 5 sites are located in proximity to the NWR and could potentially contribute

contaminants to the tidal saltmarsh or POLB ponds. Sites 8, 42, and 43 border the west

edge of the marsh near NWR sample locations B-1 and C-1 and drain directly to the NWR.

Sites 16, 44, and 45 are located near POLB Ponds 2 and 3. Site 12 is NASA Island, where

the least tern colony is located near NWR sample locations D-3 and E-4 (Navy, 1994).

Site 12 is unique in providing potential direct contact between the least terns and onsite

contaminants. The contaminants of concern from the RI study for Sites 8, 42, and 43 (Navy,

1994) include cadmium, lead, and 1,2-DCAA in groundwater. Sites 44 and 45 had elevated

levels of nickel and several organic compounds (benzene, naphthalene, phenanthrene, 2-

methylnaphthalene) in groundwater. The NASA Island Site (12) contained elevated levels of

antimony and thallium in groundwater. Groundwater from Site 16, near POLB Ponds 2 and

3, also contained elevated levels of antimony.

D-99

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

A number of sites were evaluated for OUs 6 and 7, but only Sites 4 (the oiled perimeter

road) and 24 (quench water disposal area) are in proximity to the NWR and of concern for

elevated contaminants. Both sites were included in the Site Investigation (SI) report (Navy,

1990). The perimeter road was found to be free of detectable levels of PCBs and

hazardous levels of heavy metals, but recent samples indicated elevated lead

concentrations from the road area near POLB Pond 4 and F-5 (B. Wong, unpublished data,

1994). No elevated levels of contaminants were found in the soil, surface water, or horned

snail samples from Site 24.

Previous investigations at the NWS have revealed various soil and groundwater

contaminants, as well as bioaccumulation in invertebrates of the tidal saltmarsh. Site 1,

near the POLB Pond 2, had elevated levels of metals in the soil, with chromium of greatest

concern for groundwater contamination (Navy, 1990). Site 7 contains landfill waste and is

located near POLB Ponds 3 and 4 and NWR study Site F-5. Elevated contaminants in soil

and groundwater include chromium, copper, and possibly mercury and zinc. Site 22, Oil

Island, is entirely surrounded by the marsh and is in proximity to NWR sample locations C-

2, C-3, D-2, E-2, and G-3. Previous SI results indicated elevated levels of total petroleum

hydrocarbons (TPH) in soil. Chromium and mercury in horned snails collected at sites

around Oil Island were elevated in comparison to State Mussel Watch data for other species

of molluscs (Navy, 1990).

D-100

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

The POLB pond monitoring program provides a regular census of the diversity and

abundance of fish and invertebrates within the four POLB ponds. Results from those

studies generally confirm our fish sampling results. The Jacobs Team list of species

collected (Table 1) shows fewer species than the MEC collections, primarily as a result of

MEC's more diverse sampling techniques (designed to capture all size classes of fish).

Our species and relative abundance estimates generally concur with the MEC monitoring

data (MEC, 1992).

The National Oceanic and Atmospheric Administration (NOAA) has conducted an extensive

study of temporal and spatial contaminant trends in fish and macroinvertebrates from the

Southern California Bight from Point Conception to San Diego (Mearns et al., 1991). Their

results are generally not applicable to the NWR study. The focus of the NOAA

contaminants characterization was on edible tissue and livers rather than whole body

tissues analyzed in our study. In addition, species included in the study from the NWR area

were different than those collected in the NWR study. None of the species included in the

NOAA study showed significant contamination for the tissues examined (Mearns et al.,

1991).

The California State Mussel Watch (CSMW) monitoring results for transplanted California

mussels provide a useful comparison to the NWR study as a characterization of the spatial

pattern of contamination and for an assessment of the elevation of chemical concentrations

over background. In addition, CSMW results provide partial data toward identifying

D-103

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

temporal contaminant trends. However, the CSMW and NWR study species are different

and, therefore, CSMW tissue chemistry results are not directly comparable to the NWR

study data.

The CSMW does not show any clear temporal trends in contamination. Different stations

and analytes show opposite trends for both inorganic and organic contaminants, as shown

in Table 16. The only exception to this is that the highest values of several of the inorganic

and organic contaminants occurred in the earlier samples (1985 and 1986). Some spatial

patterns are apparent. The Bolsa Chica Channel station (CSMW 713), just outside of the

NWR, shows higher concentrations of cadmium, lead, and possibly mercury in recent years

(Table 16). The lack of sampling of some stations in recent years precludes an effective

evaluation of Anaheim Bay spatial patterns.

Water and sediments of Huntington Harbour and Anaheim Bay, as well as in upstream

drainage areas, have been examined for contaminant chemistry and toxicity in two Santa

Ana Regional Water Quality Control Board (RWQCB) studies. The sampling locations in

one study (Olson and Martinez, 1993; Bailey et al., 1993) do not include NWR sites, but the

results are generally indicative of upstream sediment and water quality and may indicate

sources of NWR contamination. A separate, ongoing RWQCB study (Reid, 1994) will

include information on sediment contamination and bioaccumulation in the NWR, although

results are not yet available. Copper and lead were listed as inorganic COCs for surface

water runoff into the Anaheim Bay/Huntington Harbour system in the Regional Board

D-104

Revision: 0

	Table 16											
California State Mussel Watch Data												
for the Anaheim Bay Area												
Year		1985		1986			1990-91			1991-92		
CSMW Station]	710.2	713	708	710.2	713	708	708.5	713	708	708.5	713
-			Bolsa			Bolsa			Bolsa			Bolsa
Closest NWR	CSMW		Chica	_		Chica	_ }	_	Chica			Chica
Station	EDL85 ^a		Channel	G2	H1	Channel	G2	G2	Channel	G2	G2	Channel
	NORGANICS (mg/kg, dry weight)											
Cadmium	10.83	3.88	4.74	4.92	5.70	4.95	5.70	9.30	16.00	5.40	5.70	11.00
Chromium	3.93	1.71	2.56	1.62	2.11	2.76	15.00	3.20	2.80	1.40	1.50	1.80
Copper	21.85	8.7	12.7	7.4	10.7	11.9	13.0	13.0	11.0	11.0	12.0	14.0
Lead	11.01	14.11	15.86	5.27	12.07	12.35	4.80	1.70	6.60	3.50	3.00	6.50
Mercury	0.44	0.109	0.175	0.253	0.326	0.470	0.130	0.240	0.290	0.080	0.140	0.230
Zinc	336.3	206	256	198	279	255	280	330	230	200	210	280
ORGANICS (ug/k	g, wet we	eight)										
4,4'-DDD	NA	13.7	14.4	20.0	8.3	19.0	4.1	3.6	3.1	5.9	2.8	5.6
4,4'-DDE	NA	81.9	49.5	79.2	52.8	52.5	20.4	33.2	11.6	79.0	65.0	53.0
4,4'-DDT	NA	3.9	6.6	4.9	1.8	6.6	ND	0.9	0.9	1.6	1.6	1.7
Total DDT	NA	115.2	80.5	138.6	76.0	100.5	31.6	48.5	18.0	103.5	80.8	68.6
cis-Nonachlor	NA	ND	3.30	ND	ND	ND	0.90	1.60	1.10	1.50	1.60	1.10

2.90

36.8

36.8

1.50

10.8

10.8

6.50

76.5

76.5

2.10

17.4

17.4

1.10

9.3

9.3

2.80

51.0

51.0

1.90

40.0

40.0

1.80

44.0

52.0

CSMW = California State Mussel Watch

NWR = Seal Beach National Wildlife Refuge

NA

NA

NA

ND = Not Detected

trans-Nonachlor

PCB 1254

Total PCBs

D-105

NA = Not Available

^aPhillips, 1988; Elevated data levels (85th percentile) for inorganic chemicals

5.94

49.5

49.5

7.60

91.8

91.8

6.94

74.8

74.8

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

studies, with copper of greatest concern (Olson and Martinez, 1993). Organochlorine

compounds exceeding water quality criteria included heptachlor, dieldrin, and DDT.

Sediment contaminant results showed generally lower concentrations in the marsh and

Anaheim Bay entrance locations than upstream in Huntington Harbour and the Huntington

Harbour Warner Avenue bridge. Sediment contaminants that were elevated in upstream

locations included cadmium, copper, mercury, zinc, DDE, DDT, cis-nonachlor, and trans-

nonachlor (H. Smythe, Santa Ana RWQCB, unpub. data), indicating sources for these

chemicals outside the NWR in the Huntington Harbour drainage. Anaheim Bay watershed

samples exhibited toxicity at all sampling locations tested in the RWQCB study. Toxicity

identification results indicated that non-volatile organics were most likely responsible for the

acute toxicity observed in the watershed runoff samples (Bailey et al., 1993).

The evaluation of sediment erosion and deposition in the NWR tidal saltmarsh system did

not indicate a clear link to the observed patterns of contamination in the marsh (see

Appendix B). Although some areas of relatively high biotic contamination, such as the four

POLB ponds, are areas of sediment deposition, the sites of highest bioaccumulation are

evenly spread among NWR sites characterized as either deposition-prone, of high erosion

potential, or as falling somewhere between those extremes (see Appendix B).

In contrast, the description of the physical characteristics of the Anaheim Bay watershed in

conjunction with a knowledge of areas of deposition and erosion within the NWR may

reveal offsite sources of contamination to the NWR (see Appendices A and B). State and

D-107

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

local water, sediment, and contaminant bioaccumulation studies (discussed above) have

indicated generally higher levels of contamination in the Bolsa Chica Channel and

Huntington Harbour than near the mouth of Anaheim Bay. The watershed study revealed

that most of the surrounding urban, upland areas, totalling over 23,000 acres, drain through

the Bolsa Chica Channel to the lower end of Huntington Harbour near the eastern edge of

the Anaheim Bay marsh (see Appendix A). Various inorganic and organic chemicals have

been characterized as elevated in water and sediment in these upstream drainages (Olson

and Martinez, 1993; Bailey et al., 1993; H. Smythe, Santa Ana RWQCB, unpublished data).

It is possible that they may contribute some contaminants to the NWR from outside sources

assuming that the erosional environments clustered near the mouth and main tidal channels

of the NWR could act to transport contaminants to the major deposition-prone areas at the

extreme inner portions of the NWR (see Appendix B). As discussed above, the patterns of

bioaccumulation in the marsh do not support or refute this hypothesis. Therefore, it is not

possible to use these studies to partition the degree of contamination in the NWR food

chain between NWS sources and those originating outside NWS Seal Beach.

In summary, through the Navy's SI or RI/FS studies or various state contaminant

assessment programs, several chemicals have been found at elevated concentrations in

close proximity to or within the NWR in media that could result in exposure of biota. The

COCs, as revealed by the contaminant chemistry results of other studies and confirmed by

the NWR study results, are:

SCO100217E0.WP5\95

D-108

CLE-C01-01F237-S2-0001

Version: Final Revision: 0

Cadmium: groundwater, potential bioaccumulation from food chain

Chromium: soil, groundwater, potential bioaccumulation from food chain

o Copper: surface water, soil

o Lead: surface water, soil, potential bioaccumulation from food chain

o Mercury: soil

Nickel: groundwater, soil, potential bioaccumulation from food chain

o Zinc: soil, possible toxicity in sediments

o DDT: surface water, potential bioaccumulation from food chain

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Spatial Patterns

The patterns of elevated levels of contaminants in water and sediment at the NWR sometimes are reproduced in potential effect level concentrations found in invertebrate and fish tissue in several areas of the Anaheim Bay saltmarsh system. However, the spatial patterns of contamination for inorganic and organic chemicals are somewhat different and reflect different sources. In addition, some contaminants showed no consistent pattern of contamination in the biota that would relate to source areas at the NWS.

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

o Metals of concern (primarily cadmium, chromium, copper, lead, and zinc) were

clustered as two main areas of soil, sediment, or water contamination and

bioaccumulation (in the area of NWR sample location B-1 and on the opposite side

of the NWR in the POLB Pond 3 and NWR sample locations E-4, F-5, G-2, and G-3

area). Nickel showed no discernible pattern of contamination.

o The organic contaminant DDE showed elevated bioaccumulation values in the area

of POLB Ponds 1 and 2 and NWR sample locations A-1 and B-1. PCBs were

generally undetected and did not demonstrate a discernible spatial pattern. Other

organic compounds were not detected in high enough frequency in the biota

samples to provide information on spatial patterns.

o The RI/FS sites of greatest concern for contributing to the elevated metals

concentrations in the NWR biota are Sites 1, 2, 4, 7, 8, 22, 42, and 43. DDE was not

pinpointed to particular marsh locations other than in tissue samples.

Potential for Adverse Effects to Light-Footed Clapper Rails and California Least Terns

The following chemicals are of concern due to their presence in the tissues of dietary

species of birds at the NWR, particularly the clapper rails and least terns:

D-110

	Chemicals of Concern						
Chemical	Reason for Concern	Level of Concern	Rationale for Level of Concern				
Cadmium	Maximum detected concentration exceeds assessment levels for invertebrates. Potentially toxic levels.	Low	Assessment value is very conservative, and ratio of highest sample location mean for invertebrates to assessment value is less than 1.0.				
Chromium	Maximum detected concentration exceeds assessment levels for invertebrates and fish. Toxic levels.	Low	Ratio of maximum detected concentration to assessment value is less than 2.0, and comparisons of invertebrate and fish means to assessment values is less than 1.0.				
Copper	Maximum detected concentration exceeds assessment levels for invertebrates. Potentially toxic levels.	Low	Maximum detected concentration was in ghost shrimp, which seem to have high copper levels naturally and are not primary foods of clapper rails. Mean concentrations for invertebrates at all sample locations less than 1.0.				
Lead	Maximum detected concentration exceeds assessment levels for invertebrates. Potentially toxic levels. Bioaccumulates.	Low- Moderate	Maximum detected concentration in invertebrates exceeds 10, but means for all sample locations in all fish species are less than 1.0.				
Nickel	Maximum detected elevated levels in invertebrates and fish. Potentially toxic levels.	Low	Although nickel concentrations were elevated in comparison to some assessment values, the maximum detected concentrations and means were less than the final assessment values.				
Zinc	Maximum detected elevated exceeds assessment levels for invertebrates. Potentially toxic levels.	Low	Maximum detected concentration slightly exceeds final assessment value, but all invertebrate sample location means and fish species means are well below final assessment value.				
DDE	Maximum detected concentration equals or exceeds assessment levels for invertebrates and fish. Bioaccumulates.	Moderate -High	Maximum detected concentration in invertebrates equals final assessment value, but all sample location means are less than 1.0. However, the ratios of maximum detected concentration for fish to final assessment value exceeds 30 and the highest fish species mean is 10 times the assessment value.				

Chemicals of Concern						
Chemical	Reason for Concern	Level of Concern	Rationale for Level of Concern			
PCBs	Maximum detected concentration exceeds assessment levels for invertebrates and fish. Bioaccumulates.	Low	Ratios of maximum invertebrate sample location mean and maximum fish species mean to final assessment value are less than 0.5.			

Inorganic and organic contaminants are not expected to cause lethal effects on clapper rails or least terns at the concentrations found in food chain components at the NWR. Similarly, the contaminants found in least tern eggs do not indicate likely lethal effects in nesting birds. The most likely sublethal effects that could be expected (if clapper rails and least terns are similar to other species that have been tested) include eggshell thinning with reduced reproductive success in least terns, as a result of DDE found in fish:

o Chromium - Altered growth patterns and reduced survival of young

Other potential sublethal or indirect effects include the following:

- o Cadmium Retarded growth, anemia, testicular damage
- o Copper Feather loss, reduced food intake leading to weight loss or reduced weight gain and egg production

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

o Lead - Highly variable effects, but possibly loss of appetite, lethargy, weakness,

lesions of various organs. However, ingestion of food containing biologically

incorporated lead, although contributing to the lead burden of carnivorous birds, is

unlikely in itself to cause clinical lead poisoning (Eisler 1988b).

o Nickel - Reduced growth rate (but less effect when iron and zinc are elevated)

Zinc - Possible effects on benthic invertebrates

PCBs - Possible effects in sensitive species of fish when whole-body concentrations

are 0.4 mg/kg fresh weight or higher (concentrations in diet are not expected to

affect birds directly.) Maximum PCB concentrations in deepbody anchovy were 0.74

mg/kg; in topsmelt they were 0.46 mg/kg. Geometric means were 0.18 and 0.066

mg/kg fresh weight.

Recommendations

No further biota sampling is needed at this time to characterize the extent of contamination

in the NWR. The observed levels of invertebrate and fish contamination are not a concern

for immediate remediation, but point out the need for further action. First, the sources of

contamination in the NWR should be traced as part of the ongoing RI/FS investigation and

the potential for NWR contamination should be considered in decisions concerning site

D-113

Revision: 0

remediation. Potential sources of contamination are Oil Island (near sample location D-2),

RI Sites 5, 8, 42, and 43 (near sample location B-1), and Bolsa Chica Channel (near sample

locations H-1, G-1, and G-2).

Second, indicator organisms should be monitored for evidence of further bioaccumulation

of toxic chemicals that might increase the risk of exposure to endangered species. Horned

snails, saltmarsh snails, and deepbody anchovy (if available) should be sampled from the

two general areas of sample locations A-1, B-1 and POLB Pond 1 and sample locations F-5,

G-3, and POLB Pond 3 annually and analyzed for heavy metals and organochlorine

compounds as an assessment of exposure of endangered species to contaminated food

organisms. These areas show consistently elevated levels of contamination and food

organisms may experience further bioaccumulation as older, contaminated areas continue

to erode and leach and contribute new chemicals to the ecosystem. Bioaccumulation

monitoring may be proposed as part of RI/FS decisions on site remediation and/or

mitigation monitoring. In addition, the POLB pond sediments should be analyzed for

contaminant concentrations, as these areas are significant sediment accumulation areas

exhibiting known bioaccumulation, but unknown sediment chemistry.

D-114

REFERENCES

Atwood, J. L., and P. R. Kelly. 1984. Fish Dropped on Breeding Colonies as Indicators of Least Tern Food Habits. *Wilson Bulletin* 96:34-47.

Bailey, H. C., C. DiGiorgio, and D. E. Hinton. 1993. Anaheim Bay Watershed Toxicity Study. Final Report for Testing Events 10-17 November 1992, and 16-23 February 1993. Prepared for California Regional Quality Control Board, Santa Ana Region. Department of Medicine, School of Veterinary Medicine, University of California, Davis.

Cain, B. W., L. Sileo, J. C. Franson, and J. Moore. 1983. Effects of Dietary Cadmium on Mallard Ducklings. *Environmental Research* 32:286-297.

Connors, P. G., V.C. Anderlini, R. W. Risebrough, M. Gilbertson, and H. Hays. 1975. Investigations of Heavy Metals in Common Tern Populations. *Canadian Field-Naturalist* 89:157-162.

Eisler, R. 1985a. Cadmium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service; Biological Report 85(1.2). Washington, DC.

Eisler, R. 1985b. Selenium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service; Biological Report 85(1.5). Washington, DC.

Eisler, R. 1986a. Chromium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service; Biological Report 85(1.6). Washington, DC.

Eisler, R. 1986b. Polychlorinated Biphenyl Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service; Biological Report 85(1.7). Washington, DC.

Eisler, R. 1987a. Mercury Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service; Biological Report 85(1.10). Washington, DC.

Eisler, R. 1987b. Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service; Biological Report 85(1.11). Washington, DC.

Eisler, R. 1988a. Arsenic Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service; Biological Report 85(1.12). Washington, DC.

Eisler, R. 1988b. Lead Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service; Biological Report 85(1.14). Washington, DC.

Eisler, R. 1989. Molybdenum Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service; Biological Report 85(1.19). Washington, DC.

Eisler, R. 1990a. Boron Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service; Biological Report 85(1.20). Washington, DC.

Eisler, R. 1990b. Chlordane Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service; Biological Report 85(1.21). Washington, DC.

Eisler, R. 1993. Zinc Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service; Biological Report 10. Washington, DC.

Elliott, J. E., and D. G. Noble. 1993. Chlorinated Hydrocarbon Contaminants in Marine Birds of the Temperate North Pacific. *The Status, Ecology, and Conservation of Marine Birds of the North Pacific*. K. Vermeer, K. T. Briggs, K. H. Morgan, and D. Siegel-Causey, eds. Ottowa, Canada, Can. Wild. Serv. Spec. Publ. Pp. 241-253.

Furness, R. W., and P. S. Rainbow. 1990. Heavy Metals in the Marine Environment. CRC Press, Boca Raton, Florida.

Heinz, G. H. 1979. Methylmercury: Reproductive and Behavioral Effects on Three Generations of Mallard Ducks. *Journal of Wildlife Management* 43:394-401.

Hothem, R. L., and H. M. Ohlendorf. 1989. Contaminants in Foods of Aquatic Birds at

Kesterson Reservoir, California, 1985. Arch. Environ. Contam. Toxicol. 18:773-786.

Mearns, A. J., M. Matta, G. Shigenaka, D. MacDonald, M. Buchman, H. Harris, J. Golas, and

G. Lauenstein. 1991. Contaminant Trends in the Southern California Bight: Inventory and

Assessment. NOAA Technical Memorandum NOS ORCA 62, Seattle, Washington. October.

MEC. 1992. Anaheim Bay Biomitigation Monitoring Project. Eighth Quarterly Report,

February - April 1992. Submitted to the Port of Long Beach, Port Planning Department,

Long Beach, CA. Submitted by MEC Analytical Systems, Inc., Carlsbad, California.

April 15, 1992.

Microbics Corp. 1991. Microtox® Manual, Solid-Phase Test Protocol. Carlsbad, California.

NAS. See National Academy of Sciences.

National Academy of Sciences. 1980. Mineral Tolerance of Domestic Animals. Wash-

ington, DC.

National Academy of Sciences-National Academy of Engineering. 1973. Water Quality

Criteria 1972 (Blue Book). EPA Ecological Research Series. EPA-R3-73-033. U.S.

Environmental Protection Agency, Washington, D.C.

D-118

Nauen, C. E. 1983. Compilation of Legal Limits for Hazardous Substances in Fish and Fishery Products, Circular No. 764. FIRI/C764, Food and Agricultural Organization of the United Nations.

Navy. See Southwest Division, Naval Facilities Engineering Command.

Ohlendorf, H. M. 1989. Bioaccumulation and Effects of Selenium in Wildlife. *Selenium in Agriculture and the Environment*. L.W. Jacobs, ed., SSSA Spec. Publ. No. 23. American Society of Agronomy and Soil Science Society of America, Madison, Wl. Pages 133-177.

Ohlendorf, H. M. 1993. Marine Birds and Trace Elements in the Temperature North Pacific. *The Status, Ecology, and Conservation of Marine Birds of the North Pacific*. K. Vermeer, K. T. Briggs, K. H. Morgan, and D. Siegel-Causey, eds. Ottawa, Canada: Can. Wild. Serv. Spec. Publ. Pp. 232-240.

Ohlendorf, H. M., R. L. Hothem, and D. Welsh. 1989. Nest Success, Cause-Specific Nest Failure, and Hatchability of Aquatic Birds at Selenium-Contaminated Kesterson Reservoir and a Reference Site. *Condor* 91: 787-796.

Ohlendorf, H. M., T. W. Custer, R.W. Lowe, M. Rigney, and E. Cromartie. 1988. Organochlorines and Mercury in Eggs of Coastal Terns and Herons in California, USA. *Colonial Waterbirds* 11:85-94.

Ohlendorf, H. M., R. W. Risebrough, and K. Vermeer. 1978. Exposure of Marine Birds to Environmental Pollutants. U.S. Fish and Wildlife Service, Washington, D.C. Wildlife Research Report 9.

Ohlendorf, H. M., F. C. Schaffner, T. W. Custer, and C. J. Stafford. 1985. Reproduction and Organochlorine Contaminants in Terns at San Diego Bay. *Colonial Waterbirds* 8:42-53.

Olson, T. M., and A. Martinez. 1993. Anaheim Bay Basin Update Plan Study, Draft Final Report. Prepared for California Regional Water Quality Control Board, Santa Ana Region. Department of Civil Engineering, University of California, Irvine. August.

Pearson, R. G., M. R., Litterick, and N. V. Jones. 1973. An Air-Lift for Quantitative Sampling of the Benthos. *Freshwater Biology* 3:309-315.

Phillips, D. J. H. 1990. Arsenic in Aquatic Organisms: A Review, Emphasizing Chemical Speciation. *Aquatic Toxicol*. 16:151-186.

Phillips, P. T. 1988. California State Mussel Watch Ten Year Data Summary 1977-1987. State Water Resources Control Board, Sacramento, Division of Water Quality. Water Quality Monitoring Report No. 87-3. May.

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

Puls, R. 1988. Mineral Levels in Animal Health, Diagnostic Data. Sherpa International,

Clearbrook, B.C.

Rasmussen, D. 1992. Toxic Substances Monitoring Program, 1990 Data Report. State

Water Resources Control Board, Division of Water Quality, Sacramento. Water Quality

Monitoring Report 92-1WQ. May.

Reid, M. 1994. Personal communication from Mike Reid, State Water Resources Control

Board, to Marjorie Castleberry, CH2M HILL. February 4.

Scheuhammer, A. M. 1987. The Chronic Toxicity of Aluminium, Cadmium, Mercury, and

Lead in Birds: A Review. Environ. Pollut. 46:263-295.

Schmitt, C. J., and W. G. Brumbaugh. 1990. National Contaminant Biomonitoring Program:

Concentrations of Arsenic, Cadmium, Copper, Lead, Mercury, Selenium, and Zinc in U.S.

Freshwater Fish, 1976-1984. Arch. Environ. Contam. Toxicol. 19:731-747.

Schmitt, C. J., J. L. Zajicek, and P. H. Peterman. 1990. National Contaminant Bio-

monitoring Program: Residues of Organochlorine Chemicals in U.S. Freshwater Fish, 1976-

1984. Arch. Environ. Contam. Toxicol. 19:748-781.

D-121

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

Schuler, C. A. 1987. Impacts of Agricultural Drainwater and Contaminants on Wetlands at

Kesterson Reservoir, California. Master of Science Thesis, Oregon State University,

Corvallis. June.

Schwarzbach, S. E. 1994. Personal communication from Steve Schwarzbach, USFWS to

Harry M. Ohlendorf, CH2M HILL. February 3.

Southwest Division, Naval Facilities Engineering Command. 1994. Naval Weapons Station

Seal Beach, Installation Restoration Program, Operable Unit 5 Site Inspection Report,

Preliminary Draft. 13 January.

Southwest Division, Naval Facilities Engineering Command. 1993. Naval Weapons Station

Seal Beach, Installation Restoration Program, Draft Operable Unit 4 Site Inspection Report.

28 October.

Southwest Division, Naval Facilities Engineering Command. 1992. Naval Weapons Station

Seal Beach, California. Installation Restoration Program, Final Wildlife Refuge Study Work

Plan. 23 July.

Southwest Division, Naval Facilities Engineering Command. 1990. Final Site Inspection

Report. Volume I - Technical Report, Naval Weapons Station Seal Beach, California.

October.

D-122

Stanley, T. R., Jr., J. W. Spann, G. J. Smith, and R. Rosscoe. Manuscript in Preparation. Main and Interactive Effects of Arsenic and Selenium on Mallard Reproduction and Growth and Survival of Ducklings. U.S. Fish and Wildlife Service, Patuxent Wildlife Research Center, Laurel, MD.

Stickel, L. F. 1973. Pesticide Residues in Birds and Mammals. In *Environmental Pollution* by *Pesticides*, C.A. Edwards, ed. Plenum Press, New York, NY. Pp. 254-312.

USDI. See U.S. Department of the Interior.

U.S. Department of the Interior. 1993. Personal communication from RaJean Strube Fossen, Bureau of Reclamation, to Harry M. Ohlendorf, CH2M HILL. July 12.

USFDA. See U.S. Food and Drug Administration.

U.S. Food and Drug Administration, Bureau of Foods. 1985. Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed. USFDA, Washington, D.C.

USFWS. See U.S. Fish and Wildlife Service.

USFWS and Navy. See U.S. Fish and Wildlife Service with U.S. Navy.

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

U.S. Fish and Wildlife Service. 1990. Patuxent Analytical Control Facility Reference Manual.

U.S. Fish and Wildlife Service, Laurel, Maryland. June.

U.S. Fish and Wildlife Service with U.S. Navy. 1990. Final Environmental Impact Statement,

Endangered Species Management and Protection Plan, Naval Weapons Station-Seal Beach

and Seal Beach National Wildlife Refuge. USFWS, Portland, Oregon, and Navy, Seal Beach,

California. August.

Vermeer, K., F. A. J. Armstrong, and D. R. M. Hatch. 1973. Mercury in Aquatic Birds at

Clay Lake, Western Ontario. Journal of Wildlife Management 37:58-61.

Weseloh, D., T. W. Custer, and B. M. Braune. 1989. Organochlorine Contaminants in Eggs

of Common Terns from the Canadian Great Lakes, 1981. Environmental Pollution 59:141-

160.

White, D. H., and M. P. Dieter. 1978. Effects of Dietary Vanadium in Mallard Ducks.

Journal of Toxicology and Environmental Health 4:43-50.

White, D. H., and M. T. Finley. 1978. Effects of Dietary Cadmium in Mallard Ducks. Trace

Substances in Environmental Health XII. A symposium. D. D. Hemphill, ed. University of

Missouri, Columbia. Pp. 220-223.

D-124

CLE-C01-01F237-S2-0001 Version: Final

Revision: 0

White D. H., M. T. Finley, and J. F. Ferrell. 1978. Histopathologic Effects of Dietary

Cadmium on Kidneys and Testes of Mallard Ducks. Journal of Toxicology and Environ-

mental Health 4:551-558.

Zembal, R., and J. M. Fancher. 1988. Foraging Behavior and Foods of the Light-footed

Clapper Rail. Condor 90:959-962.

D-125

SCO100217E0.WP5\95

Final NWR Study Report CTO 0237

CLE-C01-01F237-S2-0001 Version: Final Revision: 0

blank page

Attachment 1 CHEMICALS OF CONCERN IDENTIFIED IN VARIOUS OPERABLE UNITS AT NWS SEAL BEACH

Table 6-2 Site 05 Analytes Detected in Soil (mg/kg) Naval Weapons Station Seal Beach OU4 Site Inspection Report

SAMPLE CODE 1	BCKD									-
STATION ID	05_H06	05_H03	05_H04	05_H04	05_H04	05_H05	05_MW01	05_MW01	05_MW02	05_MW02
SAMPLE ID	05-H0064-1	05-H0030-1	05-H0040-1	05-H0040-2	05-H0041-1	05-H0050-1	05-G0010-1	05-G0010-2	05-80020-1	05-B0020-2
UPPER DEPTH (# bgs)	0.2	0.5	0.5	3.75	1.1	0.5	0.5	3.5	0.5	2.5
VOLATILE ORGANIC COMPOUNDS										
2-BUTANONE								0.015		
ACETONE		0.009 J	0.005 J	0.037			0.011 J	0.056	***************************************	*******************
METHANE, CHLORODIFLUORO	0.011 JN	0.011 JN	0.009 JN (BBL)	0.062 JN	0.01 JN (BBL)	0.009 JN (BBL)	0.016 JN			••••••••••
TOLUENE							0.016	0.023	0.025	0.039
SEMIVOLATILE ORGANIC COMPOUNDS										
2-PENTANONE,4-HYDROXY-4-METHYL							6.7 JBN	6.1 JBN		
BIS(2-ETHYLHEXYL)PHTHALATE									0.068 J	0.029 J
UNKNOWN	2.8 J	0.011 J (BBL)	0.009 J (BBL)	1.4 J` (BBL)	0.008 J (BBL)	0.4 J (BBL)	0.005 J (88L)	0.31 J (BBL)	0.096 J (BBL)	0.11 J (BBL)
UNKNOWN HEXANEDIOIC ACID ISO										0.19 J
UNKNOWN HYDROCARBON	1.7 J	0.54 J (BBL)		1.3 J (BBL)		1.3 J (BBL)		1 J (BBL)	0.077 J (BBL)	0.31 J (BBL)
PESTICIDES/PCB\$								· .		
4,4'-DDD	0.00506		0.00405 (BBL)		0.0276					
4,4'-DDE	0.0156	0.0219	0.0262		0.242 EC]
4,4'-DDT	0.0301 J	0.0114 J (BBL)	0.00716 J (BBL)		0.271 ECJ					
ALPHA-CHLORDANE	<u>_</u>				0.0226	<u> </u>	<u> </u>	<u> </u>		
GAMMA-CHLORDANE			0.000198		0.0199	<u> </u>	<u> </u>			
METALS										
ALUMINUM	19400	10900 (BBL)	24400	15200 (BBL)	16900 (BBL)	21700	9220 * (BBL)	15500 * (BBL)	6020 * (BBL)	14800 * (BBL)
ANTIMONY					<u> </u>	:			4.7 B	
ARSENIC	20.5	2.7 (BBL)	5.8 \$ (BBL)	6.4 (BBL)	4.6 (BBL)	12 S (BBL)	2.4 N (BBL)	2.6 N (BBL)	6.2 BWN (BBL)	5.5 N (BBL)
BARIUM	144	34.8 B (BBL)	190	69.9 B (BBL)	83 (BBL)	217	48.2 (BBL)	108 (BBL)	62 (BBL)	106 (BBL)
BERYLLIUM	0.87 B	0.43 B (BBL)	1 B	0.72 B (BBL)	0.77 B (BBL)	0.81 B (BBL)				
CADMIUM	0.97 B	0.45 B (BBL)	1.4	0.82 B (BBL)	0.72 B (BBL)	2.2			4.2 *	<u>.</u>
CALCIUM	16200 *	8880 * (BBL)	27100 •	6900 * (BBL)	15700 * (BBL)	21100	2910 * (BBL)	3180 * (BBL)	45700 °	6090 • (BBL)
CHROMIUM	27.2	17.4 (BBL)	41.7	24.7 (BBL)	32.1	62.7	13.2 N* (BBL)	28.3 N*	49.3 N*	30 N°
COBALT	118	5.7 B (BBL)	13.6	8.7 B (BBL)	11.4 B	11.5 B	12.7	8.9 B (BBL)	8 B (BBL)	10.7 B (BBL)
COPPER	31.6 E	24.5 E (BBL)	45.2 E	26.5 E (BBL)	38.8 E	135 E	11.3 N* (BBL)	15.9 N* (BBL)	226 N*	20.7 N* (BBL)
IRON	29400	15400 (8BL)	33100	22700 (BBL)	25100 (BBL)	61600	13700 * (BBL)	20500 * (BBL)	87 100 *	23100 * (BBL)
LEAD	35.9 *	15.7 * (BBL)	14.1 * (BBL)	14.2 * (BBL)	24 * (BBL)	210 *	12.6 * (BBL)	7 * (BBL)	37.7 *	16 * (BBL)
MAGNESIUM	9330	5760 (BBL)	15100 714	9640 358 (BBL)	12400 562 (BBL)	11700 1040	3550 (BBL) 293 N* (BBL)	5470 (BBL)	3020 (BBL)	5950 (BBL)
MANGANESE	714	240 (BBL)	/14	: SOO (BBL)	202 (BBL)	1040	TAO IN (BRIT)	361 N* (BBL) 5 J	333 N, (BBL)	471 N* (BBL)
MERCURY		124 (DDI)	25.8	19.4 (BBL)		912	12.6 N* (BBL)	21.2 N* (BBL)	108 N*	!
NICKEL	22.2 5420	13.6 (BBL) 3180 (BBL)	<u>∠5.8</u> 7150	5300 (BBL)	22.2 5890	81.2 6630	2400 (BBL)	3020 (BBL)	IU0 IN	2440 (00)
POTASSIUM	3420	1 3100 (001)	······/.190	:	3090			; JUZU (DDL)	DOAR	3640 (BBL)
SILVER	475 B	2490	5460	13400	4600	11700	2350	3860	0.94 B 614 B	441 B (BBL)
SODIUM	56.8	30.8 (BBL)	63.7	45.5 (BBL)	46.6 (BBL)	61.1	27.4 (BBL)	37.1 (BBL)	16.1 (BBL)	441 B (BBL)
VANADIUM	98.7	55.9 (BBL)	107	70.8 (BBL)	118	889	37.8 * (BBL)	50.4 * (BBL)	1640 *	43 (881)
ZINC	; 70./	II 33.7 (BBL)	; 107	; /U.O (DDL)	. 110	; 007	; 37.0 (DDL)	; JU.4 (DDL)	1040	: 33

Table 6-3
Site 05 Groundwater Detections (ug/l)
Naval Weapons Station Seal Beach
OU4 Site Inspection Report

STATION ID		05_MW01	05_MW02	05_MW02	USGS_MW05	USGS_MW29	USGS_MW29
AMPLE_ID	MCLs	05-G0010	05-G0021	05-G0020	05-G0050	05-G02901	05-G0290
OLATILE ORGANIC COMPOUNDS	,						
CETONE		7 J					
OLUENE		4 J		11	2 J	2 J	
EMIVOLATILE ORGANIC COMPOUND	S						
-METHYLPHENOL	į	0.7 J				<u>.</u>	
IS(2-ETHYLHEXYL)PHTHALATE		1 J				0.8 J	
DI-N-BUTYL PHTHALATE		0.6 J		1 J			
METALS							
ALUMINUM			38 B	90.8 B	47.4 B		
NTIMONY		62.5		<u></u>	• • • •		51.7 B
ARSENIC	50		38.6	42.1	5.6 B	.	• • • • • • • • • • • • • • • • • • • •
SARIUM	1000	416	26.7 B	22.2 B	88.8 B		48.2 B
CALCIUM		546000	30600	28700	57800		560000
OBALT		8.7 B		<u></u>	<u></u>		
RON		111					<u> </u>
MAGNESIUM		1470000	16600	15800	23100		829000
MANGANESE		2230	7.1 B	7.4 B	8.2 B		1390
NICKEL		!	<u></u>	<u>.</u>	<u>.</u>		12.7 B
OTASSIUM		313000	4060 B	4040 B	<u> </u>	.	164000
SODIUM		10600000	279000	274000	242000	. .	7090000
VANADIUM		9.8 B	27.3 B	27.9 B	20 B		7.2 B

TABLE 7-1 Analytes Detected in Soil-Site 8 Metals, Oil and Grease, and pH NWS Seal Beach, Seal Beach, California (Sheet 1 of 2)

	BACKS					BAMPLE	NMBERS		
ANALYTE	(mg/kg)		PRG (mg/kg)	08H001A0-1 (mg/kg)	00H001A0-2 (mg/kg)	09H001A1+2 (mg/kg)	08H002A0-1 (mg/kg)	08H002A0-2 (mg/kg)	08H003A0-1 (mg/kg)
METALS	····								
ALUMINUM	10,100.00	30,800.00	7.80E+04	8,140.00	9,620.00	13,000.00	8,460.00	11,800,00	10,100.00
ARSENIC	1.90	ND	9,70E-01	3.90	3.30	2.60	1.30	3.00	15.50
BARIUM	56.00	172.00	5.50E+03	71.50	61.10	83.20	60.30	71,60	66.70
BERYLLIUM	ND	1.00	4.00E-01	ND	ND	ND	ND	ND	ND
CADMIUM	1.00	ND	3.90E+01	1.20	ND	ND	0.99	ND	1.10
CALCIUM	1,990.00	7,510.00		5,520.00	1,860.00	1,520.00	2,010.00	2,820.00	2,650.00
CHROMIUM	17.80	33.90	3.90E+02	13.20	17.80	22.50	16.00	19.30	17.50
COBALT	7.80	12.30		8.20	9.20	9.60	6.30	10.80	5.80
COPPER	13.00	20.30	2.90E+03	15.80	10.70	13.00	12.20	14.20	22.50
IRON	16,300.00	31,600.00		16,500.00	16,600.00	20,700.00	14,700.00	19,200.00	15,200.0
LEAD	4.30	5.00	5.00E+02	4.80	4.20	5.50	5.30	4.90	218.0
MAGNESIUM	5,120.00	8,640.00		4,200.00	4,560.00	5,520.00	4,320.00	5,020.00	3,660.00
MANGANESE	373.00	628.00	3.90E+02	258.00	1,100.00	487.00	365.00	485.00	182.0
MERCURY	ND	ND	2.30E+02	ND	ND	ND	ND	ND	ND
NICKEL	10.70	22.90	1.60E+03	14.10	12.20	15.80	10.50	16.70	15.0
POTASSIUM	3,560.00	5,210.00		780.00	3,120.00	3,310.00	3,600.00	3,060.00	2,410.0
SELENIUM	ND	ND	3.90E+02	0.68 (N)	ND	ND	0.31	0.58 (N)	ND
SODIUM	6,720.00	3,220.00		277.00	1,470.00	2,000.00	591.00	985.00	1,810.0
THALLIUM	0.89	0.99		0.76	0.75	0.90	0.79	0.99	1.2
VANADIUM	33,40	64.10	5.50E+02	25.80	35.90	42.00	29.40	40.20	32.8
ZINC	37.90	69.50	2.30E+03	44.60	38.80	47.70	37.00	44.80	92.0
BENERAL CHEMISTRY		L		IL	I	I			
OIL AND GREASE	ND	ND		ND	12.00	4	ND	17.00	230.0
pH	9.00	8.90		9.00	8.60	8.90	8.40	8.80	8.70

TABLE 7-1 Analytes Detected in Soil-Site 8 Metals, Oil and Grease, and pH NWS Seal Beach, Seal Beach, California (Sheet 2 of 2)

	EXOXO				8,	MPLE NUMBER	8	
ANALYTE	COBHICKT AG-1	08H008A0-1 (mg/kg)	PRO (mykg)	06H004A0-1 (mg/kg)	06H005A0-1 (mg/kg)	DBH005AD-2 (mg/kg)	OBHOOBAO-1 (mg/kg)	08H006A0-2 (mg/kg)
METALS	· · · · · · · · · · · · · · · · · · ·							
ALUMINUM	10,100.00	30,800.00	7.80E+04	21,200.00	19,600.00	12,600.00	23,700.00	17,500.00
ARSENIC	1.90	ND	9.70E-01	5.10	5.30	5.60	5.40	7.50
BARIUM	56.00	172.00	5.50E+03	115.00	124.00	121.00	120.00	196.00
BERYLLIUM	ND	1.00	4.00E-01	0.88	0.80	ND	0.98	ND
CADMIUM	1.00	ND	3.90E+01	ND	0.87	1.60	0.94	2.00
CALCIUM	1,990.00	7,510.00		5,530.00	7,020.00	3,570.00	2,620.00	5,030.00
CHROMIUM	17.80	33.90	3.90E+02	30.00	32.10	56.70	31.30	37.60
COBALT	7.80	12.30		11.40	12.30	7.90	14.80	9.80
COPPER	13.00	20.30	2.90E+03	17.90	29.30	54.20	21.90	43.30
IRON	16,300.00	31,600.00		26,800.00	26,900.00	23,200.00	30,000.00	24,600.00
LEAD	4.30	5.00	5.00E+02	9.80	96.00	287.00	10,10	313.00
MAGNESIUM	5,120.00	8,640.00		6,880.00	7,190.00	5,780.00	7,460.00	7,260.00
MANGANESE	373.00	628.00	3.90E+02	529.00	691.00	256.00	655,00	351.00
MERCURY	ND	ND	2.30E+02	ND	ND	0.25	ND	ND
NICKEL	10.70	22.90	1.60E+03	21.10	19.80	14.20	24.50	20.90
POTASSIUM	3,560.00	5,210.00		4,010.00	4,020.00	2,380.00	4,760.00	4,500.00
SELENIUM	ND	ND	3.90E+02	ND	ND	ND	ND	ND
SODIUM	6,720.00	3,220.00		977.00	1,920.00	369.00	2,680.00	574.00
THALLIUM	0.89	0.99		1.10	1.20	0.79	1.30	0.95
VANADIUM	33.40	64.10	5.50E+02	54.80	54.00	44.70	61.50	51.20
ZINC	37.90	69.50	2.30E+03	62.40	108.00	154.00	68.40	293.00
COURSAL CUEMICARY				i				
GENERAL CHEMISTRY	n							
OIL AND GREASE	ND ND	ND		19.00				3,500.00
pH	9.00	8.90		8.90	8.10	7.70	8.10	7.50

Shaded concentrations indicate the value is above the background screening level (see text Section 5.4), except those analytes detected in the method blanks. Not all analytes tested for are listed; those not listed were not detected (ND). For a complete list of analytes requested and tested, see Appendix C.

N -- Spiked sample, recovery not within control limits.

PRG -- Preliminary remediation goal, 4th quarter, 1993, residential soil classification.

	BACKGR	MUON		SAMPLE NUMBERS								
ANALYTE	08H007A0-1 (up/	SEHOOBAO-1 (g)	PRG (pygg)	08H001A0-1 (ug/kg)	08H001A0-2 (ug/kg)	08H001A1-2 (ug/kg)	08H002A0-1 (ug/kg)	08H002A0-2 (ug/kg)	08H003A0-1 (ug/kg)			
SEMIVOLATILE ORGANICS									to a second			
2-CHLOROPHENOL	ND	ND	2.00E+05	ND	ND	ND	ND	ND	11.00			
2,4-DIMETHYLPHENOL	ND	ND	7.80E+05	ND	ND	ND	ND	ND	ND			
2-METHYLNAPHTHALENE	ND	ND		ND	ND	ND	ND	ND	770.00			
4-METHYLPHENOL	ND	ND	2.00E+05	ND	ND	ND	ND	ND	ND			
ANTHRACENE	ND	ND		ND	ND	ND	ND	ND	8.0			
BENZO(A)PYRENE	ND	ND		ND	ND	ND	ND	ND	ND			
BENZO(G,H,I)PERYLENE	ND	ND		ND	ND	ND	ND	ND	ND			
BIS(2-ETHYLHEXYL)PHTHALATE	3421(B)	11(B)	6.10E+04	31(B)	36(B)	49(B)	150(B)	1777(B)	3620(B			
BUTYLBENZYLPHTHALATE	1810(B)		7.80E+05	45(B)	76(B)	136(B)		1522(B)				
DI-N-BUTYLPHTHALATE	2877(B)	120(B)		3904(B)	3967(B)	3536(B)	3884(B)					
DIETHYLPHTHALATE	ND	ND	3.10E+07	ND	ND	ND	ND	ND	ND			
FLUORANTHENE	ND	ND		ND	ND	ND	ND	ND	15.0			
NAPHTHALENE	ND	ND		ND	ND	ND	ND	ND	324.0			
PHENANTHRENE	ND	ND		DN	ND	ND	ND	ND	30.0			
PYRENE	ND	ND	1.20E+06	ND	ND	ND	ND	ND	28.0			
VOLATILE ORGANICS	l	ــــــــــــــــــــــــــــــــــــــ		<u> </u>	L	<u> </u>	<u> </u>	L	<u>L</u> _			
ACETONE	ND	ND	9.20E+06	ND	ND	ND	ND	ND	147.0			
2-BUTANONE	ND	ND	5.20E+06	ND	ND	ND	ND	ND	15.0			
METHYLENE CHLORIDE	ND	ND	2.20E+04	ND	ND	ND	3.00	ND	ND			
TETRACHLOROETHENE	ND	ND	2.20E+04	ND	ND	ND	ND	ND	12.0			
TOLUENE	1.00	ND	2.80E+05	ND	ND	ND	ND	ND	ND			

	BACKG	ROUND			\$4	MPLE NUMBE	18	
ANALYTE	08H007A0-1 (ug)	DelHoorad-1 kg)	PRG (MAN)	08H004A0-1 (ug/kg)	08H005A0-1 (ug/kg)	08H005A0-2 (Ug/kg)	GBHDOGAG-1 (ug/kg)	08H006A0+2 (ug/kg)
SEMIVOLATILE ORGANICS								
2-CHLOROPHENOL	ND	ND	2.00E+05	ND	ND	ND	ND	ND
2,4-DIMETHYLPHENOL	ND	ND	7.80E+05	ND	ND	ND	ND	36.00
2-METHYLNAPHTHALENE	ND	ND		ND	ND	ND	ND	ND
4-METHYLPHENOL	ND	ND	2.00E+05	ND	ND	26.00	ND	19.00
ANTHRACENE	ND	ND		ND	ND	ND	ND	ND
BENZO(A)PYRENE	ND	ND		ND	21.00	110.00	ND	ND
BENZO(G,H,I)PERYLENE	ND	ND		ND	ND	262 00	ND	271.0
BIS(2-ETHYLHEXYL)PHTHALATE	3421(B)	11(B)	6.10E+04	2860(B)	3607(B)	65(B)	4182(B	128(8
BUTYLBENZYLPHTHALATE	1810(B)		7.80E+05	1834(B)	2121(B)	ND	2050(B	ND
DI-N-BUTYLPHTHALATE	2877(B)	120(B)		3404(B)	2951(B)	196(B)	2262(B	164(B
DIETHYLPHTHALATE	ND	ND	3.10E+07	ND	ND	12.00	ND	ND
FLUORANTHENE	ND	ND		ND	ND	ND	ND	ND
NAPHTHALENE	ND	ND		ND	ND	ND	ND ND	ND
PHENANTHRENE	ND	ND		ND	ND	ND	ND	ND
PYRENE	ND	ND	1.20E+06	10.00	6.00	21.00	ND	22.0
VOLATILE ORGANICS			L				 	
ACETONE	ND	ND	9.20E+06	ND	ND	ND	ND	ND
2-BUTANONE	ND	ND	5.20E+06	ND	ND	ND _	ND	ND
METHYLENE CHLORIDE	ND_	ND	2.20E+04	ND	ND	ND	ND	ND
TETRACHLOROETHENE	ND	ND	2.20E+04	ND	ND	ND	ND	ND
TOLUENE	1.00	ND	2.80E+05	ND	ND	ND	ND	ND

Shaded concentrations indicate the value is above the background screening level (see text Section 5.4), except those analytes detected in the method blanks.

Not all analytes tested for are listed; those not listed were not detected (ND). For a complete list of analytes requested and tested, see Appendix C.

B -- Analyte is found in the associated blank as well as in the sample.

PRG -- Preliminary remediation goal, 4th quarter, 1993, residential soil classification.

/-1

TABLE 7-3 Analytes Detected in Groundwater - Site 8 NWS Seal Beach, California

ANALYTE	MCL (EPA) (µg/l)	MCL (DHS) (µg/l)	08GB21A0-1 (µg/l)	Q	08GB28A0-1 (µg/l)	Q	08GB28A1-1 (µg/l)	Q
METALS	<u> </u>		<u>' </u>	<u> </u>		<u> </u>		
ALUMINUM		1,000.00	121.00	В	119.00	В	128.00	В
BARIUM		1,000.00	75.30	В	72.80	В	72.30	В
CADMIUM	5.00	10.00	6.00		ND		ND	
CALCIUM			133,000.00	E	351,000.00	E	348,000.00	Ε
IRON			54.80	В	ND		ND	
MAGNESIUM			61,100.00		382,000.00		380,000.00	
MANGANESE			19.60	E	1,460.00	Ε	1,430.00	Ε
POTASSIUM			ND		2,870.00	В	3,380.00	В
SELENIUM	50.00	10.00	3.90	BN	8.10	BN	ND	
SODIUM			624,000.00		4,320,000.00		4,210,000.00	
THALLIUM	2.00		ND		ND		2.60	B N
VANADIUM			18.30	В	ND		14.40	В
GENERAL CHEMISTRY								
OIL AND GREASE			4,000.00		3,000.00		3,000.00	
pΗ			7.10		7.10		7.10	
VOLATILE ORGANICS								
1,2-DICHLOROETHANE	5.00	0.50	4.00	J	17,00		17.00	
METHYLENE CHLORIDE	5.00		NÐ		ND		3.00	J

Not all analytes tested for are listed. Those not listed were not detected (ND). For a complete list of analytes requested and tested for, see Table 5-4 and Appendix C. Shaded concentrations indicate the value is above an MCL.

- EPA Environmental Protection Agency.
- DHS California Department of Health Services.
- MCL Maximum contaminant level.
- Q Qualifier.
- B Analyte is found in the associated blank as well as in the sample.
 - Concentration exceeds the calibration range of the gas chromatography/mass spectroscopy (GC/MS) instrument.
- N Indicates presumptive evidence of a compound.
- J Indicates an estimated value, less than the contract-required quantitation limit (CRQL) and greater than zero.

TABLE 7-5 Analytes Detected in Soil-Site 12 Metals and Nitrogen NWS Seal Beach, Seal Beach, California (Sheet 1 of 4)

	BACKGROUND					Sample A	UMBERS		***************************************	
	151401840-1	PRO	12H001AD-1	12H001A1-1	12H002A0-1	12H003A0-1	12H003AD-2	12H004A0-1	12H004A0-2	12H005A0-1
ANALYTE	(mo/sg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
METALS										
ALUMINUM	12,200.00	7.80E+04	14,400.00	11,100.00	8,260.00	16,300.00	17,600.00	13,400.00	9,280.00	14.100.00
ANTIMONY	ND	3.10E+01	ND	ND						
ARSENIC	3.60	9.70E-01	2.70	2.40	3.70	6.20	6.90	6.20	6.10	3.00
BARIUM	91.00	5.50E+03	97.80	85.80	89.30	109.00	155.00	102.00	98.90	152.00
CALCIUM	13,200.00		6,530.00	4,980.00	7,820.00	12,500.00	22,200.00	4800 (*)	15700 (*)	7470 (*
CHROMIUM	24.20	3.90E+02	30.90	22.70	20.70	36.70	25.70	20.50	16.90	28.10
COBALT	8.90		8.50	7.10	5.60	7.20	9.50	6.90	6.30	6.5
COPPER	20.50	2.90E+03	20.20	16.30	12.70	22.00	28.50	24.20	410.00	20.3
IRON	22,900.00		25,100.00	19,600.00	13,700.00	27,900.00	23,900.00	23,500.00	14,400.00	24.300.0
LEAD	3.70	5.00E+02	4.00	3.50	20 70	6.00	86.70	4.20	80.40	3.4
MAGNESIUM	6,540.00		6,680.00	5,470.00	4,280.00	7,560.00	9,370.00	5,290.00	4,870.00	7,010.0
MANGANESE	429.00	3.90E+02	241.00	226.00	254.00	269.00	432.00	231.00	236,00	223.0
MERCURY	ND	2.30E+02	ND	ND	ND	ND	ND	ND	0.15	ND
NICKEL	26.70	1.60E+03	16.80	14.80	12.20	20.70	18.70	14.00	10.70	18.9
POTASSIUM	4,870.00		4,580.00	3,850.00	2,020.00	4,810.00	5,150.00	3,180.00	2,350.00	5,260.0
SELENIUM	ND	3.90E+02	ND	ND	0.57	ND	ND	ND	ND	ND
SODIUM	955.00		1,300.00	968.00	784.00	1,150.00	2,390.00	1,900.00	1,700.00	2,000.0
THALLIUM	1.20		1.20	0.91	1.30	1.00	0.93	ND	0.66	1.1
VANADIUM	30.40	5.50E+02	42.70	33,40	35.70	50.70	48.90	44.30	26.80	41.1
ZINC	64.80	2.30E+04	61.90	53.70	58.10	66.60	121.00	363.00	135.00	57.6
NITROGEN			<u> </u>	<u> </u>]	<u> </u>		<u> </u>	L	1
TKN	72.50		475.00	273.00	1,460.00	114.00	349.00	256.00	137.00	88.20
AMMONIA	4.00		1.20	2.10	9.90	5.50	11.10	ND	9.90	ND
NITRATE	2.76	1.00E+05	ND	0.55	ND	0.12	ND	0.16		ND

TABLE 7-5 Analytes Detected in Soil—Site 12 Metals and Nitrogen NWS Seal Beach, Seal Beach, California (Sheet 2 of 4)

	BACKGROUND					SAMPLE N	umbers .		######################################	***************************************
ANALYTE	12H018A0-1	PRO	12H006AD-2	12H005A1-2	12H006AG-1	12H006A0-2	12H007A0-1	12H008A0-1	12H008A0-2	12H008A1-1
	(morks)	(maka)	(mykg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
METALS					·					
ALUMINUM	12,200.00	7.80E+04		14,500.00	7,870.00	10,900.00	12,500.00	8,530.00	9,890.00	9,280.
ANTIMONY	ND ND	3.10E+01	ND ND	ND	ND	ND	ND	ND	ND	ND
ARSENIC	3.60	9.70E-01	2.30	2.80	2.90	6.80	5.80	2.90	3.40	3.
BARIUM	91.00	5.50E+03	145.00	159.00	72.10	120.00	109.00	81.10	88.30	81.
CALCIUM	13,200.00		7440 (*)	4070 (*)	6080 (*)	7860 (*)	8280 (*)	3490 (*)	6480 (*)	5500
CHROMIUM	24.20	3.90E+02	17.60	19.90	12.30	18.80	20.50	11.60	14.90	14.
COBALT	8.90		7.10	8.50	5.10	8.20	7.80	4.90	6.00	6.
COPPER	20.50	2.90E+03	17.50	15.00	10.20	21.70	87.40	9.70	13.30	11.
IRON	22,900.00		15,300.00	17,000.00	13,900.00	17,400.00	20,200.00	16,200.00	18,600.00	17,300
LEAD	3.70	5.00E+02	41.30	47.40	4.50	27.20	86.40	3.30	4.60	3
MAGNESIUM	6,540.00		3,890.00	3,930.00	3,540.00	6,130.00	5,910.00	3,580.00	5,590.00	4,520
MANGANESE	429.00	3.90E+02	218.00	217.00	163.00	299.00	307.00	176.00	168.00	183.
MERCURY	ND	2.30E+02	0.10	ND	ND	ND	ND	ND	ND	Ø.
NICKEL	26.70	1.60E+03	14.20	13.90	7.00	19.70	13.40	6.60	14.70	9
POTASSIUM	4,870.00		2,450.00	2,680.00	2,540.00	2,920.00	3,270.00	2,570.00	3,700.00	2,930.
SELENIUM	ND	3.90E+02	ND	ND						
SODIUM	955.00		2,130.00	1,960.00	901.00	1,340.00	1,670.00	1,050.00	1,350.00	978.
THALLIUM	1.20		0.74	0.61	0.58	0.77	1.10	0.74	0.86	0.
VANADIUM	30.40	5.50E+02	29.90	35.90	25.20	46.30	37.20	23.80	30.70	29
ZINC	64.80	2.30E+04	140.00	60.20	37.80	66.70	96.80	31.30	39.40	37.
IITROGEN						<u> </u>				
TKN	72.50		1,650.00	505.00	50.70	133.00	196.00	26.80	130.00	42
AMMONIA	4.00		7.70	6.60	ND	ND	1.60	ND	ND	ND
NITRATE	2.76	1.00E+05	ND	ND	0.11	ND	ND	1.00	0.24	0.

TABLE 7-5
Analytes Detected in Soil-Site 12
Metals and Nitrogen
NWS Seal Beach, Seal Beach, California
(Sheet 3 of 4)

	BACKGROUND		SAMPLE HUMBERS									
ANALYTE	12H018A0-1 (mg/kg)	PRG (mg/kg)	12H009AD-1 (mg/kg)	12H009A0-2 (mg/kgi)	12H01GAG-1 (mg/kg)	12H010A0-2 (mg/kg)	12H011A0-1 (mg/kg)	12H011A0-2 (mg/kg)	12H012A0-1 (mg/kg)	12H012A0-2 (mg/kg)		
METALS												
ALUMINUM	12,200.00	7.80E+04	7,810.00	9,440.00	17,200.00	9,630.00	9,450.00	12,200.00	11,000.00	9,210.0		
ANTIMONY	ND	3.10E+01	ND	ND	13.30	ND	ND	ND	ND	ND		
ARSENIC	3.60	9.70E-01	2.50	2.80	3.80	5.90	2.30	11.50	2.50	3.2		
BARIUM	91.00	5.50E+03	69.30	89.10	107.00	113.00	97.80	133.00	92.60	81.3		
CALCIUM	13,200.00		1820 (*)	9430 (*)	7450 (*)	25600 (*)	3020 (*)	22100 (*)	8340 (*)	5320 (*		
CHROMIUM	24.20	3.90E+02	7.60	16.30	35.90	15.90	12.60	20.30	17.40	15.0		
COBALT	8.90		6.90	6.10	7.90	6.30	6.60	7.00	4.40	5.4		
COPPER	20.50	2.90E+03	11.50	11.50	23.50	30.80	11.20	22.80	12.7 (*)	12.1 (1		
IRON	22,900.00		20,800.00	18,300.00	25,700.00	13,500.00	16,400.00	16,500.00	19,800.00	15,900.0		
LEAD	3.70	5.00E+02	3.10	4.60	4.10	35.70	2.70	100.00	3.1 (*)	11 (
MAGNESIUM	6,540.00		2,990.00	6,610.00	7,050.00	5,130.00	3,790.00	5,530.00	5,940.00	4,520.0		
MANGANESE	429.00	3.90E+02	242.00	196.00	275,00	268.00	187.00	339.00	201 (N)	242 (1		
MERCURY	ND	2.30E+02	ND	ND	ND	0.27	ND	ND	ND	ND		
NICKEL	26.70	1.60E+03	8.70	21.10	19.20	8.60	10.00	12.20	11.10	11.8		
POTASSIUM	4,870.00		2,430.00	2,830.00	5,500.00	2,370.00	2,520.00	2,980.00	3,370.00	2,930.0		
SELENIUM	ND	3.90E+02	ND	ND	ND	ND	ND	ND	ND	ND		
SODIUM	955.00		817.00	961.00	2,000.00	1,530.00	1,120.00	1,390.00	1,170.00	873.0		
THALLIUM	1.20		0.92	1.00	1.30	0.54	0.62	0.57	1.20	0.9		
VANADIUM	30.40	5.50E+02	22.20	28.80	51.70	26.90	29.40	35.20	30.30	28.0		
ZINC	64.80	2.30E+04	39.20	38.50	64.80	134.00	43.60	210.00	43.90	54.4		
NITROGEN					<u> </u>		<u> </u>			1		
TKN	72.50		60.60	83.60		191.00	144.00	612.00		327.0		
AMMONIA	4.00		ND	ND	ND	7.30	1.20	1.30	2.00	2.0		
NITRATE	2.76	1.00E+05	ND	ND	ND	0.68	0.83	0.41	1.87	0.4		

	BACKGROUND				8,4	MPLE NUMBER	8		
	12H018A0-1	PRG	12H013A0-1	12H013A0-2	12H018A1-1	1211014A0-1	12H014AD-2	12H015A0-1	12H015AG-2
ANALYTE	(mg/kgi)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
METALS									
ALUMINUM	12,200.00	7.80E+04	14,000.00	6,360.00	14,000.00	10,200.00	10,800.00	11,800.00	11,800.00
ANTIMONY	ND	3.10E+01	ND	ND	ND	ND	ND	ND	ND
ARSENIC	3.60	9.70E-01	4.30	4.30	6.40	4.60	3.10	3.40	4.40
BARIUM	91.00	5.50E+03	98.70	52.10	103.00	80.50	72.80	105.00	100.00
CALCIUM	13,200.00		11400 (*)	43000 (*)	23400 (*)	9810 (*)	11500 (*)	11000 (*)	14600 (*)
CHROMIUM	24.20	3.90E+02	24.30	11.60	20.50	14.20	18.80	19.20	24.00
COBALT	8.90		7.70	2.90	6.10	3.60	4.40	6.00	6.10
COPPER	20.50	2.90E+03	47.5 (*)	11 (*)	39.8 (*)	25.2 (*)	13.3 (*)	22.8 (*)	33.8 (*)
IRON	22,900.00		23,100.00	8,960.00			18,100.00	24,600.00	20,700.00
LEAD	3.70	5.00E+02	18.9 (*)	13.3 (*)	33.4 (*)	3.2 (*)	14.8 (*)	3.3 (*)	35.6 (*
MAGNESIUM	6,540.00		7,780.00	3,370.00	6,070.00	5,730.00	5,340.00	7,540.00	6,900.00
MANGANESE	429.00	3.90E+02	288 (N)	135 (N)	303 (N)	175 (N)	190 (N)	299 (N	286 (N
MERCURY	ND	2.30E+02	ND	ND	ND	ND	0.09	ND	ND
NICKEL	26.70	1.60E+03	15.20	8.20	15.10	9,10	17.10	11.70	16.50
POTASSIUM	4,870.00		3,880.00	1,620.00	3,290.00	2,470.00	3,080.00	3,620.00	3,270.00
SELENIUM	ND	3.90E+02	ND	ND	ND	ND	ND	ND	ND
SODIUM	955.00		2,160.00	1,570.00	1,980.00	1,380.00	1,480.00	1,750.00	1,390.00
THALLIUM	1.20		0.91	0.48	0.89	0.99	0.83	1.20	ND ND
VANADIUM	30.40	5.50E+02	48.40	20.60	38.80	31.00	35.30	39.50	42.60
ZINC	64.80	2.30E+04	80.20	34.10	96.10	42.40	51.20	51.00	103.00
<u></u>									
NITROGEN			•						
TKN	72.50		1,180.00	335.00	1,130.00	252.00	412.00	177.00	544.00
AMMONIA	4.00		18.80	17.00	34.20	7.90	8.80	8.60	19.30
NITRATE	2.76	1.00E+05	ND	0.25	ND	ND	5.04	0.86	3.20

Shaded concentrations indicate the value is above the background screening level (see text Section 5.4), except those analytes detected in the method blanks.

Not all analytes tested for are listed; those not listed were not detected (ND). For a complete list of analytes requested and tested, see Appendix C.

N -- Spiked sample, recovery not within control limits.

PRG -- Preliminary remediation goal, 4th quarter, 1993, residential soil classification.

7-29

^{* --} Duplicate analysis not within control limits.

TABLE 7-6
Analytes Detected in Soil-Site 12
Volatile and Semivolatile Organics
NWS Seal Beach, Seal Beach, California
(Sheet 1 of 4)

	HACKGEOUND					SAMPLE	WMBERS			
	12H016A0-1	PAG	12H001A0-1	12H001A1-1	12H002A0-1	12H003A0-1	12H003A0-2	12H004A0-1	12H004A0-2	12H005A0-1
ANALYTE	(ug/kg)	(ug/kg)	(tig/(qj)	(voltg)	(u g/k g)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
VOLATILE ORGANICS										
2-BUTANONE	ND	5.20E+05	NA	NA	NA	NA	ND	NA	42.00	NA
ACETONE	ND	9.20E+05	NA NA	NA	NA NA	NA	42.00	NA NA	187.00	NA
BENZENE	ND	2.70E+03	NA NA	NA	NA	NA	1.00	NA NA	ND	NA
CHLOROFORM	5.00	9.60E+02	NA	NA	NA	NA	ND	NA	ND	NA
METHYLENE CHLORIDE	ND	2.20E+04	NA	NA	NA	NA	8.00	NA	ND	NA
TRICHLOROFLUOROMETHANE	ND	4.10E+02	NA NA	NA	NA NA	NA NA	ND	NA NA	ND	NA NA
BTEX				1	·		1	1	.1	t
BENZENE	ND ND	2.70E+03		ND	ND	ND	ND ND	1.30	4-22-20-20-20-20-20-20-20-20-20-20-20-20-	Commission of the Commission o
TOLUENE	4.50	2.80E+05	1)	ND ND	ND	ND	ND	3.50		4 ********************
ETHYLBENZENE	ND	3.10E+05	ND	ND	ND	ND	ND	ND	1.50	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
XYLENES	4.10	9.90E+04	ND	ND	ND	ND	ND	4.30	6.70	7.80
PESTICIDES	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ll	<u> </u>	L.,,,	1	1	.L		1
4.4'-DDD	ND	3.50E+03	NA	NA	NA	NA	NA	NA	NA	NA
4.4'-DDE	ND	2.50E+03	NA	NA	NA	NA	NA	NA	NA	NA NA
4,4'-DDT	ND	2.50E+03	NA	NA	NA	NA	NA	NA	NA	NA
BETA-BHC	ND		NA	NA	NA	NA	NA	NA	NA	NA
DIELDRIN	0.32(P)	5.30E+01	NA	NA	NA NA	NA	NA	NA	NA NA	NA
GAMMA-CHLORDANE	ND		NA	NA	NA	NA	NA	NA	NA	NA

TABLE 7-6 Analytes Detected in Soil-Site 12 Volatile and Semivolatile Organics NWS Seal Beach, Seal Beach, California (Sheet 2 of 4)

	BACKGROUND					SAMPLE	www.	•		
	12H016A0-1	PRG	121100540-2	12H005A1-2	12H006A0-1	12H008A0-2	12H007A0-1	12H008A0-1	12H008A0-2	12H008A1-1
ANALYTE	(ugřig)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
VOLATILE ORGANICS	***************************************		***************************************							
2-BUTANONE	ND	5.20E+05	ND	ND	NA	ND	NA	NA	ND	NA
ACETONE	ND	9.20E+05	75.00	92.00	NA	74.00	NA	NA	49.00	NA
BENZENE	ND	2.70E+03	ND	ND	NA	ND	NA	NA	ND	NA
CHLOROFORM	5.00	9.60E+02	ND	ND	NA	ND	NA	NA	ND	NA
METHYLENE CHLORIDE	ND	2.20E+04	ND	ND	NA	ND	NA	NA	ND	NA
TRICHLOROFLUOROMETHANE	ND	4.10E+02	ND	ND	NA	ND	NA	NA	ND	NA NA
BTEX	1		lt		1			1	<u> </u>	l
BENZENE	ND	2.70E+03	2.00	1.30	1.70	1.10	ND	ND	ND	ND
TOLUENE	4.50	2.80E+05	8.70	7.20	10.50	4.30	3.90	3.70	7.30	2.66
ETHYLBENZENE	ND	3.10E+05	8.30	3.20	4.40	1.90	ND	ND	2.00	ND
XYLENES	4.10	9.90E+04	11.50	11.10	18 10	6.10	3.40	4.00	8.20	ND
PESTICIDES	<u> </u>		<u>ll</u>		I	l	<u> </u>	J	1	L
4.4'-DDD	ND	3.50E+03	1.11(P)	0.82	NA NA	NA	NA	NA	ND	NA
4,4'-DDE	ND	2.50E+03	ND	ND	NA	NA	NA	NA	ND	NA
4,4'-DDT	ND	2.50E+03	ND	ND	NA	NA	NA	NA	ND	NA
BETA-BHC	ND		0.31	ND	NA	NA	NA	NA	ND	NA
DIELDRIN	0.32(P)	5.30E+01	ND	ND	NA	NA	NA	NA	ND	NA
GAMMA-CHLORDANE	ND		ND	ND	NA	NA	NA	NA	ND	NA

	BACKGROUND					SAMPLE	NUMBERS			
	12H016A0-1	PAG	128-6009AG-1	12H009A0-8	123401040-1	12H010A0-2	12H011A0-1	12H011A0-2	12H012A0-1	12H012A0-2
ANALYTE	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
VOLATILE ORGANICS										
2-BUTANONE	ND .	5.20E+05	NA	ND	NA	ND	NA	ND	NA	ND
ACETONE	ND	9.20E+05	NA	ND	NA	200.00	NA NA	ND ND	NA	ND
BENZENE	ND	2.70E+03	NA	ND	NA	ND ND	NA	ND	NA	ND
CHLOROFORM	5.00	9.60E+02	NA	ND	NA	ND	NA	ND	NA	ND
METHYLENE CHLORIDE	ND	2.20E+04	NA	ND	NA	ND	NA NA	ND	NA	ND
TRICHLOROFLUOROMETHANE	ND	4.10E+02	NA NA	ND	NA NA	ND	NA NA	ND	NA NA	ND
втех	<u></u>			L	1	<u> </u>	1		L	1
BENZENE	ND	2.70E+03		1.20	************					
TOLUENE	4.50	2.80E+05			<u> </u>		3.00		ļ	2.2
ETHYLBENZENE	ND	3.10E+05	ND	ND	ND	ND	1.70		ND_	ND
XYLENES	4.10	9.90E+04	2.70	1.60	2.70	2.80	5.80	0.30	1.70	2.4
PESTICIDES	. В		L	L	L	1	<u> </u>	<u> </u>	1	J
4.4'-DDD	ND	3.50E+03	NA	NA	NA	NA	ND	NA	NA	NA
4.4'-DDE	ND	2.50E+03	NA	NA	NA	NA	ND_	NA NA	NA NA	NA
4.4'-DDT	ND	2.50E+03	NA	NA	NA	NA	ND	NA	NA	NA
BETA-BHC	ND		NA	NA	NA	NA	ND	NA	NA NA	NA.
DIELDRIN	0.32(P)	5.30E+01	NA	NA	NA	NA	ND	NA	NA NA	NA_
GAMMA-CHLORDANE	ND		NA	NA	NA	NA	ND	NA NA	NA NA	NA

	ELACKERIOUNE				SA	MPLE NUMBI	ns		
	12H018A0-1	PRG	12H019A0-1	12101340-2	12H013A1-1	12H014A0-1	1211014A0-2	12H016A0-1	12H015A0-2
ANALYTE	(ug/kg)	(Ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
VOLATILE ORGANICS	<u> </u>								Annalus and in the
2-BUTANONE	ND	5.20E+05	NA	ND	NA	NA	ND	NA	ND
ACETONE	ND	9.20E+05	NA	ND	NA	NA	ND	NA	30.00
BENZENE	ND	2.70E+03	NA	ND	NA	NA	ND	NA	ND
CHLOROFORM	5.00	9.60E+02	NA	ND	NA	NA	ND	NA	ND
METHYLENE CHLORIDE	ND	2.20E+04	NA	ND	NA	NA	ND	NA	4.00
TRICHLOROFLUOROMETHANE	ND	4.10E+02	NA NA	ND	NA	NA	1.00	NA	ND
втех	JL		II	l		l	l	<u> </u>	.1
BENZENE	ND	2.70E+03	1.40	1.20	1.20	2.00	1.00	ND	0.80
TOLUENE	4.50	2.80E+05	4.20	6.30	3.80	13.00	4.90	2.60	2.00
ETHYLBENZENE	ND	3.10E+05	ND	1.60	ND	3.70	1.40	ND	ND
XYLENES	4.10	9.90E+04	2.70	10.00	4.60	22.00	7.80	2.30	1.30
PESTICIDES	11		<u> </u>	<u> </u>	l	<u> </u>	l	<u> </u>	1
4,4'-DDD	ND	3.50E+03	NA NA	NA	NA	NA	3.95(P)	NA	NA
4,4'-DDE	ND	2.50E+03	NA	NA	NA	NA	3.63	NA	NA
4,4'-DDT	ND	2.50E+03	NA	NA	NA	NA	12.95	NA	NA
BETA-BHC	ND		NA	NA	NA	NA	ND	NA	NA
DIELDRIN	0.32(P)	5.30E+01	NA	NA	NA	NA	ND	NA	NA
GAMMA-CHLORDANE	ND		NA	NA	NA	NA	0.1(P)	NA	NA

Shaded concentrations indicate the value is above the background screening level (see text Section 5.4), except those analytes detected in the method blanks.

Not all analytes tested for are listed; those not listed were not detected (ND). For a complete list of analytes requested and tested, see Appendix C.

P -- An estimate.

N -- Spiked sample, recovery not within control limits.

PRG -- Preliminary remediation goal, 4th quarter, 1993, residential soil classification.

7-3

TABLE 7-7 Analytes Detected in Groundwater - Site 12 NSW Seal Beach, California (Sheet 1 of 2)

ANALYTE	MCL (EPA) (PG/I)	MCL (DHS) (Hg/l)	12GP01A0-1 (U9/I)	Q	12GP02A0-1 (49A)	Q	12GP03A0-1 (µg/l)	a	12GP03A1-1 (µg/l)	Q	12GP04A0-1 (µg/l)	a
METALS												
ALUMINUM		1,000.00	ND		237.00		ND		ND		ND	
ANTIMONY	6.00		ND		ND		90,10		ND		ND	
ARSENIC	50.00	50.00	ND		48.90	В	ND		33.70	В	30.40	В
BARIUM	2,000.00	1,000.00	137.00	BE	433.00	E	162.00	B	183.00	BE	727.00	E
CALCIUM			413,000.00	E	344,000.00	E	640,000.00	Е	645,000.00	E	356,000.00	E
IRON			ND		12.30	В	2,900.00		1,640.00		165.00	
MAGNESIUM			884,000.00	E	407,000.00	E	1,020,000.00	E	1,040,000.00	E	597,000.00	E
MANGANESE			ND		96.90		2,800.00		2,900.00		878.00	
POTASSIUM			549,000.00	E	364,000.00	E	526,000.00	E	551,000.00	E	378,000.00	E
SODIUM			10,100,000.0 0		7,160,000.00		11,600,000.0 0		11,700,000.0 0		7,690,000.00	
THALLIUM	2.00		14.20	N	ND		ND		7.20	BN	ND	
VANADIUM			25.60	В	11.60	В	19.50	В	23.40	В	ND	
ZINC			ND		ND	<u> </u>	559.00		732.00		ND	
GENERAL CHEMISTRY												
AMMONIA (as N)			140.00		1,900.00		4,000.00		3,900.00		17,400.00	
TKN			21,200.00		21,200.00		96,500.00		100,000.00		70,100.00	
PESTICIDES												
4,4'-DDD			0.50	JP	ND		0.01	J P	ND		0.01	J
4,4'-DDE			0.35	JP	ND		ND		ND		ND	T

TABLE 7-7 Analytes Detected in Groundwater - Site 12 NSW Seal Beach, California

(Sheet 2 of 2)

ANALYTE	MCL (EPA)	MGL (DHS) (yg/l)	12GP01A0-1 (µg/l)	٩	12GP02AG-1 (µg/l)	a	12GP03A0-1 (µg/l)	۵	12GP03A1-1 (µg/l)	Q	12GP04A0-1 (µg/l)	a
PESTICIDES				,		····		·				
4,4'-DDT			0.19	P	ND		ND		ND		ND	
ALDRIN			2.45	Р	ND		ND		ND		ND	
ALPHA-CHLORDANE	2 (tot)	0.1 (tot)	1,69		ND	<u> </u>	ND		ND		ND	
GAMMA-CHLORDANE	2 (tot)	0.1 (tot)	2.34		ND		ND		ND		0.03	J
HEPTACHLOR	0.40	0.01	0.14	JP	ND		ND		ND		ND	
VOLATILE ORGANICS												
CARBON DISULFIDE			ND		2.00	J	ND		ND		2.00	J
ACETONE			ND		ND		ND		39.00		ND	
BENZENE	5.00	1.00	ND		ND		ND		ND		0.20	J
TOLUENE	1.00		ND		ND		ND		0.40	J	0.50	J
XYLENES	10,000.00	1,750.00	ND		ND		ND		ND		0.30	J

Not all analytes tested for are listed. Those not listed were not detected (ND). For a complete list of analytes requested and tested for, see Table 5-4 and Appendix C.

Shaded concentrations indicate the value is above an MCL.

EPA - Environmental Protection Agency.

DHS - California Department of Health Services.

MCL - Maximum contaminant level.

Q - Qualifier.

B - Analyte is found in the associated blank as well as in the sample.

E - Concentration exceeds the calibration range of the gas chromatography/mass spectroscopy (GC/MS) instrument.

N - Indicates presumptive evidence of a compound.

J - Indicates an estimated value, less than the contract-required quantitation limit (CRQL) and greater than zero.

P - Greater than 25 percent difference between two GC columns and the lower value is reported.

14

TABLE 7-9 Analytes Detected in Soil-Site 16 Metals and Nitrogen NWS Seal Beach, Seal Beach, California (Sheet 1 of 4)

	BACKGROUND					SAMPLE	EUMBERS.			
	16H014AD-1	PRG	16H001A0-1	18H001A0-2	16H002AG-1	16H002A0-2	16H003AD-1	16H003A0-2	16H003A1-2	16H004A0-1
ANALYTE	(mg/kg)	(mg/kg)	(mg/kg)	(mg/gg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
METALS										
ALUMINUM	26,400.00	7.80E+04	14,000.00	2,280.00	26,800.00	3,780.00	29,600.00	2,220.00	2,710,00	8,700.0
ARSENIC	1.90	9.70E-01	3.8 (N)	1.1 (N)	3.8 (N)	1.5 (N)	4.5 (N)	1.2 (N)	1.3 (N)	2 (N
BARIUM	143.00	5.50E+03	82.70	10.60	170.00	22.40	184.00	11.80	13.30	· · · · · · · · · · · · · · · · · · ·
BERYLLIUM	0.94	4.00E-01	ND	ND	1.10	ND	1.30	ND	ND	ND
CADMIUM	ND	3.90E+01	ND	ND	ND	ND	ND	0.71	ND	0.7
CALCIUM	14,300.00		17,600.00	1,780.00	58,000.00	4,010.00	52,300.00	7,640.00	2,150.00	British did the state of the st
CHROMIUM	31.80	3.90E+02	17.40	4.40	30.00	5.50	31.80	3.70	4.50	
COBALT	12.40		7.80	1.80	14.60	3.50	16.10	2.30	2.90	
COPPER	30.60	2.90E+03	22.20	3.30	38.90	4.50	42.30	2.70	3.70	4
IRON	33,400.00		19,100.00	3,920.00	33,700.00	7,300.00	37,000.00	4,020.00	4,700.00	
LEAD	9.30	5.00E+02	9.7 (N)	1.4 (N)	15.3 (N)	2 (N)	16.7 (N)	1.4 (N)	1.7 (N)	
MAGNESIUM	15,800.00		8,100.00	1,170.00	13,500.00	1,810.00	14,900.00	1,120.00		1
MANGANESE	668.00	3.90E+02	359.00	53.40	759.00	98.40	774.00	58.10	63.80	
NICKEL	24.90	1.60E+03	16.60	4.30	25.80	5.30	28.20	3.30	5.00	
POTASSIUM	7,660.00		4,050.00	688.00	6,470.00	1,020.00	6,950.00	722.00	918.00	
SILVER	ND	3.90E+02	ND							
SODIUM	1,270.00		775.00	225.00	877.00	115.00	828.00	173.00	136.00	
THALLIUM	1.20	-	1.5 (N)	0.43 (N)	2.1 (N)	0.44 (N)	2.5 (N)	0.51 (N)	0.47 (N)	
VANADIUM	66.10	5.50E+02	43.40	7.30	65.60	14.00	71.80	7.40	8.60	
ZINC	131.00	2.30E+04	73.20	10.50	100.00	15.40	107.00	10.70	12.30	·
			<u> </u>							1
NITROGEN										
TKN	2,200.00		81.00	1.50	100.00	ND	130.00	ND	ND	1,450.00
AMMONIA	56.20		5.10	2.50	64.00	1.40	71.00	ND	1.10	
NITRATE/NITRITE	0.80	1.00E+05	ND	1.40	ND	4.80	129.00	7.00	8.70	1

TABLE 7-9 Analytes Detected in Soil-Site 16 Metals and Nitrogen NWS Seal Beach, Seal Beach, California (Sheet 2 of 4)

	BACKGHOUNG					SAMPLE N	NMBERS			
	18H014AD-1	P913	16H004A0-2	16H005A0-1	16H005A0-2	16H005A1-1	16H006A0-1	16H006A0-2	16H006A1-2	16H007A0-1
ANALYTE	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
METALS										
ALUMINUM	26,400.00	7.80E+04	17,700.00	5,600.00	7,470.00	4,950.00	6980 (*)	9830 (*)	14500 (*)	4,230.00
ARSENIC	1.90	9.70E-01	3.2 (N)	2.4 (N)	2.5 (N)	2.1 (N)	2 (N)	3.4 (N)	5.1 (N)	1.20
BARIUM	143.00	5.50E+03	107.00	38.00	49.70	32.70	49 (*)	78.6 (*)	124 (*)	20.80
BERYLLIUM	0.94	4.00E-01	ND	ND	ND	ND	ND	ND	ND	ND
CADMIUM	ND	3.90E+01	0.84	ND	0.79	1.20	1.00	ND	ND	0.83
CALCIUM	14,300.00		40,100.00	7,260.00	8,640.00	19,000.00	4670 (*)	7940 (*)	6830 (*)	8,240.00
CHROMIUM	31.80	3.90E+02	19.60	8.10	10.10	9.60	10.8 (*)	13.3 (*)	20.9 (*)	6.5
COBALT	12.40		10.00	4.90	5.30	4.00	5.3 (*)	7.2 (*)	9.6 (*)	2.4
COPPER	30.60	2.90E+03	19.60	9.20	10.50	12.70	12.4 (*)	11.9 (*)	18.6 (*)	8.10
IRON	33,400.00		24,200.00	10,600.00	12,100.00	13,300.00	13000 (*)	15400 (*)	24700 (*)	9,330.00
LEAD	9.30	5.00E+02	17.2 (N)	6.9 (N)	4.6 (N)	14.5 (N)	25.2 (*,N)	4.5 (*,N)	5.5 (*,N)	4.10
MAGNESIUM	15,800.00		13,500.00	2,960.00	3,880.00	2,480.00	3950 (*)	5680 (*)	8790 (*)	2,000.0
MANGANESE	668.00	3.90E+02	607.00	136.00	164.00	151.00	198 (*,N)	206 (*,N)	323 (*,N)	98.70
NICKEL	24.90	1.60E+03	16.30	7.10	10.10	9.10	9.9 (*)	12.2 (*)	20.9 (*)	5.8
POTASSIUM	7,660.00		5,750.00	1,980.00	2,470.00	1,850.00	2740 (*)	3630 (*)	5760 (*)	1,080.0
SILVER	ND	3.90E+02	ND	ND	ND_	ND	1,50	ND	ND	ND
SODIUM	1,270.00		1,460.00	146.00	170.00	239.00	292.00	1,320.00	1,510.00	177.00
THALLIUM	1.20		1.6 (N)	0.53 (N)	0.54 (N)	0.85 (N)	ND	ND	0.87	0.30
VANADIUM	66.10	5.50E+02	45.20					28.8 (*)	46 (*)	
ZINC	131.00	2.30E+04	74.60	37.10	38.60	67.10	242 (*)	51.8 (*)	66.4 (*)	45.80
			<u> </u>	L	l	<u> </u>	L	L	l	1
NITROGEN				1	T			20.70		1
TKN	2,200.00		1,700.00							
AMMONIA	56.20		42.00	·				4.79		7.4
NITRATE/NITRITE	0.80	1.00E+05	0.20	0.33	0.32	0.57	ND	0.31	0.13	2.1

TABLE 7-9 Analytes Detected in Soil—Site 16 Metals and Nitrogen NWS Seal Beach, Seal Beach, California (Sheet 3 of 4)

	BACKGROUND					SAMPLE	rumbers			*****************
	16H014A0-1	PRO	16H007A0-2	18H008A0-1	16H006A0-2	16H009A0-1	16H009A0-2	16H010A0-1	16H010A0-2	16H011A0-1
ANALYTE	(myke)	(myrks)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
METALS										
ALUMINUM	26,400.00	7.80E+04	4,050.00	6250 (*)	7210 (*)	11000 (*)	15100 (*)	4890 (*)	4710 (*)	27,600.0
ARSENIC	1.90	9.70E-01	0.95	1.6 (N)	2.6 (N)	2.8 (N)	6.7 (N)	1 (N)	1.3 (N)	4.2
BARIUM	143.00	5.50E+03	20.90	47.7 (*).	60.8 (*)	79.8 (*)	106 (*)	33.6 (*)	31.5 (*)	132.0
BERYLLIUM	0.94	4.00E-01	ND	ND	ND	ND	ND	ND	ND	ND
CADMIUM	ND	3.90E+01	ND	ND	ND	ND	ND	ND	ND	ND
CALCIUM	14,300.00		7,550.00	4280 (*)	3990 (*)	6350 (*)	9060 (*)	3910 (*)	3960 (*)	17,900.0
CHROMIUM	31.80	3.90E+02	5.90	9.5 (*)	10.5 (*)	15.9 (*)	20.1 (*)	7.1 (*)	7(*)	30.5
COBALT	12.40		2.20	4.6 (*)	5.5 (*)	8.2 (*)	9 (*)	3.7 (*)	3.7 (*)	13.0
COPPER	30.60	2.90E+03	7.50	9.1 (*)	9.5 (*)	17.1 (*)	17.2 (*)	6.4 (*)	5.7 (*)	27.1
IRON	33,400.00		8,330.00	11200 (*)	11900 (*)	18000 (*)	23200 (*)	9430 (*)	8670 (*)	32,900.0
LEAD	9.30	5.00E+02	4.30	6.7 (*,N)	3.8 (*,N)	9.3 (*,N)	5.5 (*,N)	4.7 (*,N)	2.6 (*,N)	6.7
MAGNESIUM	15,800.00		1,980.00	3850 (*)	4420 (*)	6250 (*)	8250 (*)	2820 (*)	2790 (*)	13,400.0
MANGANESE	668.00	3.90E+02	94.10	163 (*,N)	167 (*,N)	272 (*,N)	342 (*,N)	127 (*,N)	119 (*,N)	554.0
NICKEL	24.90	1.60E+03	5.30	9.6 (*)	10.8 (*)	15.9 (*)	16.7 (*)	6.1 (*)	6 (*)	22.5
POTASSIUM	7,660.00		945.00	2430 (*)	2660 (*)	4630 (*)	5100 (*)	1650 (*)	1560 (*)	7,210.0
SILVER	ND	3.90E+02	ND	ND	ND	ND	ND	ND	ND	ND
SODIUM	1,270.00		148.00	316,00	1,030.00	378.00	1,850.00	250.00	223.00	6,000.0
THALLIUM	1.20		0.32	ND	0.71	ND	ND	ND	ND	1.3
VANADIUM	66.10	5.50E+02	17.50	21.2 (*)	22 (*)	35.6 (*)	45.6 (*)	18.6 (*)	17.1 (*)	70.7
ZINC	131.00	2.30E+04	45.30	64.9 (*)	35.9 (*)	67.8 (*)	61.4 (*)	26 (*)	21.6 (*)	87.4
	1		I		L			<u> </u>		
NITROGEN					p					
TKN	2,200.00		460.00	257.00	37.10	284.00	33.90	290.00	200.00	793.0
AMMONIA	56.20		9.16	19.70		19.20	9.16	25.10	10.30	7.8
NITRATE/NITRITE	0.80	1.00E+05	2.03	7.7	0.36	12.57	0.46	0.49	0.33	ND

	BACKGROUND			8.4	MPLE NUMBER	S	
ANALYTE	16H014AG-1 (marke)	PRG (PREFRY)	18H011A0-2 (mg/kg)	16H012A0-1 (mg/kg)	16H012A0-2 (mg/kg)	16H012A0-1 (mg/kg)	16H013A0-2 (mg/kg)
METALS							
ALUMINUM	26,400.00	7.80E+04	9,460.00	22,700.00	8,580.00	11,400.00	11,400.00
ARSENIC	1.90	9.70E-01	ND	5.80	1,10	2.1 (N)	2.2 (N
BARIUM	143.00	5.50E+03	42.50	110.00	41.70	111.00	123.0
BERYLLIUM	0.94	4.00E-01	ND	ND	ND	ND	ND
CADMIUM	ND	3.90E+01	ND	ND	ND	ND	ND
CALCIUM	14,300.00		8,460.00	12,200.00	5,390.00	20,900.00	17,100.0
CHROMIUM	31.80	3.90E+02	13.00	27.40	12.80	15.60	17.3
COBALT	12.40		5.30	11.00	5.70	6.70	6.2
COPPER	30.60	2.90E+03	7.40	23.80	6.10	14.30	16.5
IRON	33,400.00		16,800.00	29,000.00	15,800.00	15,800.00	15,300.0
LEAD	9.30	5.00E+02	1.70	5.80	1.70	3.6 (N)	4.1 (N
MAGNESIUM	15,800.00		5,670.00	11,800.00	5,440.00	4,980.00	4,170.0
MANGANESE	668.00	3.90E+02	255.00	444.00	243.00	198.00	147.0
NICKEL	24.90	1.60E+03	9.40	19.40	7.20	12.50	11.9
POTASSIUM	7,660.00		2,830.00	6,520.00	2,970.00	2,950.00	4,300.0
SILVER	ND	3.90E+02	ND	ND	ND	ND	ND
SODIUM	1,270.00		3,090.00	6,266.00	3,470.00	1,950.00	699.0
THALLIUM	1.20		0.74	1.02	0,53	0.68 (N)	1) 8.0
VANADIUM	66.10	5.50E+02	34.50	62.60	31.80	27.80	24.9
ZINC	131.00	2.30E+04	37.30	84.20	37.40	48.20	60.2
NITROGEN	11				<u> </u>	L	
TKN	2,200.00		268.00	1,030.00	138.00	83.00	109.0
AMMONIA	56.20		4.27	8.65	2.44	2.00	2.3
NITRATE/NITRITE	0.80	1.00E+05	ND	ND	ND	13.70	4.2

Shaded concentrations indicate the value is above the background screening level (see text Section 5.4), except those analytes detected in the method blanks. Not all analytes tested for are listed; those not listed were not detected (ND). For a complete list of analytes requested and tested, see Appendix C.

PRG -- Preliminary remediation goal, 4th quarter, 1993, residential soil classification.

7-5

^{* --} Duplicate analysis not within control limits.

N -- Spiked sample, recovery not within control limits.

TABLE 7-10 Analytes Detected in Soil-Site 16 Volatile and Semivolatile Organics NWS Seal Beach, Seal Beach, California (Sheet 1 of 4)

	BACKGROUND					SAMPLE !	NUMBERS			
ANALYTE	16H014A0-1 (ug/kg)	PRG (ug/kg)	16H001A0-1 (UQ/kg)	16H001A0-2 (IIg/kg)	16HD02AG-1 (ug/kg)	16H002A0-2 (ug/kg)	16H003A0-1 (ug/kg)	16H003A0-2 (ug/kg)	16H003A1-2 (ug/kg)	16H004A0-1 (ug/kg)
SEMIVOLATILE ORGANICS			***************************************				terente America	terrete Boorteen		
BIS(2-ETHYLHEXYL)PHTHALATE	22(B)	6.10E+04	24.00	17.00	13.00	31.00	26.00	18.00	14.00	26.00
BUTYLBENZYLPHTHALATE	ND	7.80E+06	ND	ND	ND	ND	ND	11.00	ND	16.00
DI-N-BUTYLPHTHALATE	194(B)		417.00	287.00	2679 00	1655 00	2531.00	284.00	170.00	185.00
DIETHYLPHTHALATE	ND	3.10E+07	ND	20.00	ND	19.00	ND	19.00	10.00	28.00
PYRENE	ND	1.20E+06	61.00	ND	ND	ND	ND	ND	ND	ND
VOLATILE ORGANICS	<u> </u>		N	l	L	l	L	L	1	l
ACETONE	ND	9.20E+06	ND	ND	222.00	ND	ND	ND	ND	ND
TOLUENE	ND	2.80E+05	ND	ND	ND	ND	ND	ND	ND	ND
TRICHLOROFLUOROMETHANE	ND	4.10E+05	ND	ND	ND	ND	ND	ND	ND	ND

TABLE 7-10 Analytes Detected in Soil-Site 16 Volatile and Semivolatile Organics NWS Seal Beach, Seal Beach, California (Sheet 2 of 4)

	EXCKGROUND					SAMPLE	NUMBERS			
ANALYTE	16H014A0-1 (up/kg)	PRG (ug/kg)	16H004A0-2 (us/kg)	18H005A0-1 (IIQ/Kg)	16H005A0-2 (ua/ka)	16H005A1+1 (ug/kg)	16H006A0-1 (ug/kg)	16H006AD-2 (UD/kg)	16H006A1-2 (UO/ka)	16H007A0-1 (ug/kg)
SEMIVOLATILE ORGANICS		00001.006 - 10105 - 1.0000	***************************************		000000.00X : MOG - / /000000 X	××××××××××××××××××××××××××××××××××××××	**************************************	******		500000 hat - 60K : / 80000
BIS(2-ETHYLHEXYL)PHTHALATE	22(B)	6.10E+04	21.00	12.00	11.00	38.00	ND	ND	ND	17(B)
BUTYLBENZYLPHTHALATE	ND	7.80E+06	ND	ND	ND	ND	ND	ND	ND	ND
DI-N-BUTYLPHTHALATE	194(B)		195.00	149.00	159.00	1572.00	294(B)	386(B)	297(B)	163(B)
DIETHYLPHTHALATE	ND	3.10E+07	21.00	20.00	11.00	10.00	ND	ND	ND	ND
PYRENE	ND	1.20E+06	ND	ND	ND	ND	ND	ND	ND	10.00
VOLATILE ORGANICS	#							l		L
ACETONE	ND	9.20E+06	ND	ND	ИD	ND	ND	ND	ND	ND
TOLUENE	ND	2.80E+05	ND	ND	ND	ND	ND	1.00	ND	ND
TRICHLOROFLUOROMETHANE	ND	4.10E+05	ND	ND	ND	ND	ND	ND	2.00	ND

TABLE 7-10 Analytes Detected in Soil-Site 16 Volatile and Semivolatile Organics NWS Seal Beach, Seal Beach, California (Sheet 3 of 4)

	BACKGROUND					SAMPLE	NUMBERS			
ANALYTE	16H014A0-1 (Ug/kg)	PAG (up/kg)	16H007A0-2 (UQ/kg)	(ug/kg)	18HD08AG-2 (Ug/kg)	16H009A0-1 (ug/kg)	16H009A0-2 (ug/kg)	16H010A0-1 (Ug/kg)	16H010A0-2 (ug/kg)	16H011AD-1 (ug/kg)
SEMIVOLATILE ORGANICS							<u> </u>		······································	
BIS(2-ETHYLHEXYL)PHTHALATE	22(B)	6.10E+04	28(B)	ND	ND	ND	ND	ND	ND	13(B)
BUTYLBENZYLPHTHALATE	ND	7.80E+06	7.00	ND	ND	ND	ND	ND	ND	ND
DI-N-BUTYLPHTHALATE	194(B)		319(B)	373(B)	346(B)	300(B)	230(B)	222(B)	352(B)	
DIETHYLPHTHALATE	ND	3.10E+07	ND	ND	ND	ND	ND	ND	ND	ND
PYRENE	ND	1.20E+06	ND	ND	ND	ND	ND	ND	ND	ND
VOLATILE ORGANICS	II		L		<u> </u>	L,		An extended about the second data and account to		I
ACETONE	ND	9.20E+06	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	ND	2,80E+05	ND	0.00	ND	ND	ND	ND	ND	ND
TRICHLOROFLUOROMETHANE	ND	4.10E+05	ND	3.00	ND	ND	3.00	ND	ND	ND

TABLE 7-10 Analytes Detected in Soil-Site 16 Volatile and Semivolatile Organics NWS Seal Beach, Seal Beach, California (Sheet 4 of 4)

	EACKGROUND						
ANALYTE	16H014A0-1 (ug/kg)	PRG (VO/kg)	16H011A0-2 (Ug/kg)	16H012AG-1 (Ug/kg)	16H012A0-2 (ug/kg)	1BH01SA0-1 (ug/kg)	16H013A0-2 (ug/kg)
SEMIVOLATILE ORGANICS	**						
BIS(2-ETHYLHEXYL)PHTHALATE	22(B)	6.10E+04	18(B)	19(B)	15(B)	26.00	15.00
BUTYLBENZYLPHTHALATE	ND	7.80E+06	ND	ND	ND	ND	ND
DI-N-BUTYLPHTHALATE	194(B)		408(B)	243(B)	166(B)	488.00	205.00
DIETHYLPHTHALATE	ND	3.10E+07	ND	ND	ND	20.00	18.00
PYRENE	ND	1.20E+06	ND	ND	ND	ND	ND
VOLATILE ORGANICS	<u> </u>		L}				I
ACETONE	ND	9.20E+06	ND	ND	ND	ND	ND
TOLUENE	ND	2.80E+05	ND	ND	ND	ND	ND
TRICHLOROFLUOROMETHANE	ND	4.10E+05	3.60	ND	ND	ND	ND

Shaded concentrations indicate the value is above the background screening level (see text Section 5.4), except those analytes detected in the method blanks. Not all analytes tested for are listed; those not listed were not detected (ND). For a complete list of analytes requested and tested, see Appendix C.

B -- Analyte is found in the associated blank as well as in the sample.

PRG -- Preliminary remediation goal, 4th quarter, 1993, residential soil classification.

7-65

TABLE 7-11 Analytes Detected in Groundwater - Site 16 NWS Seal Beach, California (Sheet 1 of 2)

ANALYTE	MCL (EPA) (P97)	MCL (DHS) (µg/l)	16GP01A0-1 (µg/l)	Q	16GP02A0-1 (Hg/l)	G	16GP02A1-1 (µg/l)	a	16GP03A0-1 (µg/l)	a
METALS									•	- 1
ALUMINUM		1,000.00	144.00	В	271.00		483.00		319.00	
ANTIMONY	6.00		82.70		ND		78.70		ND	
BARIUM	2,000.00	1,000.00	481.00		193.00		190.00		101.00	T
CALCIUM			464,000.00		1,350,000.00		1,350,000.00		34,100.00	
COBALT			ND		15.70		22.60		ND	
IRON			140.00		20,900.00		21,500.00		218.00	
LEAD		50.00	ND		0.50		ND		ND	
MAGNESIUM			691,000.00		1,150,000.00		1,170,000.00		13,400.00	
MANGANESE			3,170.00		10,900.00		10,400.00		402.00	
NICKEL	100.00		ND		22.30	В	58.50		ND	
POTASSIUM			162,000.00		133,000.00		131,000.00		11,800.00	
SODIUM			4,890,000.00		9,220,000.00		9,390,000.00		354,000.00	
THALLIUM	2.00		ND		4.90	В	5.70	В	ND	
ZINC			8,490.00		15,900.00		14,500.00		215.00	
GENERAL CHEMISTRY										
AMMONIA (as N)			1,720.00		1,860.00		1,790.00		ND	
TKN			1,450.00		1,940.00		1,580.00		ND	
VOLATILE ORGANICS										
METHYLENE CHLORIDE	5.00		ND		ND		4.00	JB	3.00	JB

TABLE 7-11 Analytes Detected in Groundwater - Site 16 NWS Seal Beach, California (Sheet 2 of 2)

Not all analytes tested for are listed. Those not listed were not detected (ND).

For a complete list of analytes requested and tested for, see Table 5-4 and Appendix C.

Shaded concentrations indicate the value is above an MCL, except for values that have a "B" qualifier.

EPA - Environmental Protection Agency.

DHS - California Department of Health Services.

MCL - Maximum contaminant level.

Q - Qualifier.

B - Analyte is found in the associated blank as well as in the sample.

E - Concentration exceeds the calibration range of the GCMS instrument.

N - Indicates presumptive evidence of a compound.

J - Indicates an estimated value, less than the CRQL and greater than zero.

TABLE 7-13

Analytes Detected in Soil—Site 42 Metals, Oil and Grease, and Pesticides/PCBs NWS Seal Beach, Seal Beach, California

	BACKG							BAUPLEN	UMBERS				
	42H008AG-1	42H00BAQ-1	PRO	42A005A0-1	42A005A0-2	42A006AD-1	42A006A0-2	42H001A0-1	42H002A0-1	42H003A0-1	1-1 AEOGHSP	42H004A0-1	42H007A0-1
ANALYTE	(aig/kg)	(mg/kg)	(813.69)	(mykg)	(mg/kg)	(mg/kp)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mp/kg)	(mg/kg)
METALS												****************	
ALUMINUM	10,300.00	30,000.00	7.80E+03	NA	12,300.00	NA	12,900.00	11,600.00	15,100.00	5,400.00	6,260.00	7,960.00	14,300,00
ARSENIC	1.30	4.10	9.70E-01	NA	ND	NA	1.8 (N)	5.50	3.30	0.79	1.30	5.20	2.40
BARIUM	54.10	123.00	5.50E+03	NA	79.00	NA	108.00	81.50	102.00	23.80	41.40	82.50	78.30
BERYLLIUM	ND	1,10	4.00E-01	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND
CADMIUM	ND	ND	3.90E+01	NA	ND	NA	ND	0.76	0.90	ND	ND	5.30	ND
CALCIUM	2,150.00	10,900.00		NA	3,660.00	NA	46.400.00	2,290.00	2,020.00	2,460.00	2,760.00	4,720.00	2,430.00
CHROMIUM	18.10	32.00	3.90E+02	NA	16.50	NA	16.00	20.30	23.40	9.40	9.60	28.90	17.10
COBALT	9.10	10.30		NA	7.70	NA	7.50	11.10	9.30	2.20	3.50	6.10	7.30
COPPER	10.40	18.60	2.90E+03	NA	12.50	NA	11.00	15.00	14.80	4.80	6.10	48.70	12.40
IRON	15,800.00	32,300.00		NA	17,800.00	NA	17,000.00	18,400.00	21,900.00	7,170.00	9,330.00	14,500.00	17,000.00
LEAD	4.00 (N)	5.90	5.00E+02	NA	11.6 (N)	NA	8.7 (N)	5.40	5.60	1.6 (N)	2.1 (N)	255.00	4.2 (N)
MAGNESIUM	3,880.00	9,050.00		NA	4,640.00	NA	7,060.00	4,800.00	6,100.00	2,410.00	3,350.00	4,200,00	4,330,00
MANGANESE	757.00	269.00	3.90E+02	NA	376.00	NA	309.00	541.00	380.00	96.60	127.00	199.00	319.00
MERCURY	ND	0.29	2.30E+02	NA	ND	NA	ND	ND	ND	ND	0.14	0.68	ND
NICKEL	10.50	22.90	1.60E+03	NA	11.40	NA	13.90	13.10	15.80	6.40	7.20	20.10	13.10
POTASSIUM	3,400.00	4,960.00		NA	3,870.00	NA	2,730.00	3,100.00	3,930.00	1,440.00	2,180.00	2,170,00	3,180.00
SILVER	ND	ND	3.90E+02	NA	ND	NA	ND	ND	ND	3.10	ND	1.60	ND
SODIUM	675.00	1,610.00		NA	443.00	NA	1,320.00	1,090.00	2,330.00	191.00	204.00	277.00	426.00
THALLIUM	1.00 (N)	1.02		NA	0.87 (N)	NA	1.1 (N)	1.00	1.10	0.46 (N)	0.75 (N)	1.00	1.2 (N)
VANADIUM	35.90	60.40	5.50E+02	NA NA	33.60	NA	27.70	40.90	44.00	14.60	18.60	28.70	34.90
ZINC	33,80	67.00	2.30E+04	NA	42.40	NA	44.40	41.60	53.40	25.60	29.40	198.00	41.40
				<u> </u>									
GENERAL CHEMISTR	ΙΥ												
OIL AND GREASE	ND	ND		ND	18.00	BB CX	86.00	17.00	17.00	12.00	11.00	270.00	ND
PESTICIDES		·											I
4,4'-DDE	ND	ND	2.50E+00	NA	ND	NA	0.0003	ND	ND	ND	ND	ND	ND
AROCLOR-1260	ND	ND		NA	ND	NA	ND	ND	ND	ND	ND	0.06	ND

Shaded concentrations indicate the value is above the background screening level (see text Section 5.4), except those analytes detected in the method blanks.

Not all analytes tested for are listed; those not listed were not detected (ND). For a complete list of analytes requested and tested, see Appendix C.

* -- Duplicate analysis not within control limit.

NA -- Not analyzed.

N -- Spilked sample, recovery not within control limits.

PRG -- Preliminary remediation goal, 4th quarter, 1993, residential soil classification.

	BACKG	OHUO		SAMPLE NUMBERS									
	421(000AD	42H009AD-1	PRG	42A005A0-2	42A008A0-2	42H001A0-1	42H002A0-1	42H003A0-1	42H003A1-1	42H004AD-1	42H007A0-		
ANALYTE	(ugh	(g)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)		
SEMIVOLATILE ORGANICS						***************************************	***************************************						
2-METHYLNAPHTHALENE	ND	ND		ND	ND	ND	ND	ND	ND	16.00	ND		
ACENAPHTHENE	ND	ND		ND	ND	ND	ND	ND	ND	5.00	ND		
BENZO(A)PYRENE	ND	ND		ND	ND	ND	ND	ND	ND	46.00	ND		
BIS(2-ETHYLHEXYL)PHTHALATE	117(B)	17(B)	6.10E+04	14.00	17.00	899(B)	1457(B)	249(B)	58(B)	1044(B)	22(E		
BUTYLBENZYLPHTHALATE	ND	ND	7.80E+06	ND	7.00	1053(B)	1281(B)	1116(B)	ND	534(B)			
CHRYSENE	ND	ND		ND	ND	ND	ND	ND	ND	84.00	ND		
DIETHYLPHTHALATE	ND	ND	3.10E+07	ND	16.00	ND	ND	ND	ND	ND	ND		
DI-N-BUTYLPHTHALATE	807(B)	176(B)		239.00	318.00	4315(B)	4033(B)	ND	732(B)	3178(B)	827(E		
FLUORANTHENE	ND	ND		ND	ND	ND	ND	ND	ND	53.00	ND		
N-NITROSODIPHENYLAMINE	ND	ND	1.70E+05	ND	ND	ND	ND	ND	ND	25.00	ND		
PHENANTHRENE	ND	ND		ND	ND	ND	ND	ND	ND	26.00	ND		
PYRENE	ND	ND	1.20E+06	DND	8.00	ND	ND	ND	ИD	133.00	ND		
VOLATILE ORGANICS	<u>lll</u>			A		L		<u> </u>	<u> </u>	1	1		
ACETONE	ND	ND	9.20E+06	ND	ND	ND	ND	26.00	ND	ND	ND		
ETHYLBENZENE	ND	ND	3.10E+05	ND	ND	ND	ND	ND	ND	ND	5.0		
XYLENES	ND	ND	9.90E+04	ND	ND	ND	ND	ND	ND	ND	42.0		

Shaded concentrations indicate the value is above the background screening level (see text Section 5.4), except those analytes detected in the method blanks.

Not all analytes tested for are listed; those not listed were not detected (ND). For a complete list of analytes requested and tested, see Appendix C.

8 -- Analyte is found in the associated blank as well as in the sample.

PRG -- Preliminary remediation goal, 4th quarter, 1993, residential soil classification.

1-/6

TABLE 7-15 Analytes Detected in Groundwater - Site 42 NWS Seal Beach, California

ANALYTE	MCL (EPA) (µg/l)	MCL (DHS) (µg/l)	42GB13A0-1 (µg/l)	Q	42GB13A1-1 (µg/l)	Q
METALS						
ALUMINUM		1,000.00	599.00		600.00	
BARIUM	2,000.00	1,000.00	15.30	В	17.60	В
CALCIUM			14,900.00	E	15,900.00	E
IRON			478.00		464.00	
MAGNESIUM			9,380.00		9,290.00	
SODIUM			296,000.00		301,000.00	
GENERAL CHEMISTRY						
OIL AND GREASE			2,000.00		2,000.00	

Not all analytes tested for are listed. Those not listed were not detected (ND). For a complete list of analytes requested and tested for, see Table 5-4 and Appendix C.

EPA - Environmental Protection Agency.

DHS - California Department of Health Services.

MCL - Maximum contaminant level.

- Q Qualifier.
- B Analytes is found in the associated blank as well as in the sample.
- E Concentration exceeds the calibration range of the gas chromatography/mass spectroscopy (GC/MS) instrument.

	BACKO	(4)		BAMPLE NUMBERS										
	42H008A0-1	62 EVENAGE	PRIG	43H001A0-1	43H001A1-1	43HX02A0-1	43H003A0-1	13H004A0-1	43H005A0-1	49H006A0-1	43H007A0-1	43H007A1-1	43H000A0-1	
ANALYTE	(mg/kg)	(myley)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
METALS											***************************************		WINDSHIP OF THE PARTY OF THE PA	
ALUMINUM	10,300.00	30,000.00	7.80E+04	22,800.00	21,100.00	14,200.00	9,700.00	16,700.00	15,400.00	11,800.00	26,500.00	26,400.00	25,200.00	
ARSENIC	1.30	4.10	9.70E-01	3.10	5.1 (*)	2.80	0.56	2.80	2.60	2.30	5.20	3.00	2.8 (*)	
BARIUM	54.10	123.00	5.50E+03	139.00	106.00	91.00	56.50	84.80	66.20	68.20	138.00	133.00	77.70	
BERYLLIUM	ND	1.10	4.00E-01	1.00	0.93	ND	ND	0.82	ND	ND	1.00	1.10	1.10	
CALCIUM	2,150.00	10,900.00		1,930.00	25,000.00	2,230.00	2,170.00	2,080.00	1,670.00	2,110.00	9,420.00	2,080.00	3,690.00	
CHROMIUM	18.10	32.00	3.90E+02	29.90	25.70	21.70	16.50	23.80	21.00	19.70	29.90	28.50	28.20	
COBALT	9.10	10.30		10.60	9.90	8.60	6.40	8.70	9.30	7.60	11.00	12.10	12.60	
COPPER	10.40	18.60	2.90E+03	20.00	17.60	15.20	11.70	17.70	12.40	14.90	19.00	20.50	19.70	
IRON	15,800.00	32,300.00		29,400.00	25,900.00	19,600.00	15,400.00	22,300.00	21,000.00	17,000.00	28,700.00	29,400.00	30,500.00	
LEAD	4.00	5.90	5.00E+02	6.40	5.50	5 (N)	3.5 (N)	4.9 (N)	5.30	4.9 (N)	6.3 (N)	6.5 (N)	6.40	
MAGNESIUM	3,880.00	9,050.00		6,920.00	6,810.00	4,750.00	4,530.00	6,160.00	5,670.00	4,520.00	7,140.00	6,930.00	7,270.00	
MANGANESE	757.00	269.00	3.90E+02	467.00	867.00	374.00	401.00	473.00	446.00	334.00	608.00	641.00	663.00	
MERCURY	ND	0.29	2.30E+02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
NICKEL	10.50	22.90	1.60E+03	22.50	20.00	14.60	11.90	21.40	16.50	14.00	25.10	22.10	23.10	
POTASSIUM	3,400.00	4,960.00		3,930.00	3,650.00	3,530.00	3,850.00	3,910.00	3,010.00	3,790.00	4,150.00	4,340.00	4,730.00	
SODIUM	675.00	1,610.00		2,780.00	2,860.00	1,860.00	1,350.00	3,110.00	1,670.00	1,440.00	3,210.00	3,140.00	3,710.00	
THALLIUM	1.00	1.02		1.40	1.50	1.1 (N)	0.89 (N)	1.2 (N)	1.10	1.1 (N)	1.5 (N)	1.5 (N	1.4 (N	
VANADIUM	35.90	60.40	5.50E+02	58.70	52.50	40.50	30.60	45.40	43.60	37.30	59.80	60.10	60.60	
ZINC	33.80	67.00	2.30E+04	62.80	56.10	44.40	37.30	52.90	47.80	41.60	62.50	63.80	66.10	
										l				
GENERAL CHEMISTRY	1													
OIL AND GREASE	ND	ND		1,200,00	860.00	12.00	ND	ND	ND	83.00	W	ND	ND	
рН	NA NA	NA		9.10	9.00	8.80	9.00	9.20	9.10	8.50	8.80	8.70	8.90	

Shaded concentrations indicate the value is above the background screening level (see text Section 5.4), except those analytes detected in the method blanks.

Not all analytes tested for are listed; those not listed were not detected (ND). For a complete list of analytes requested and tested, see Appendix C.

N -- Spiked sample, recovery not within control limits.

PRG -- Preliminary remediation goal, 4th quarter, 1993, residential soil classification.

7-89

TABLE 7-18 Analytes Detected in Soil-Site 43 Volatile and Semivolatile Organics NWS Seal Beach, Seal Beach, California

	: 175: (4)												
	egerreres;			43-00 (AG-1	49-HOLALI	43402401	434003A0-1	49-00440-1	4391005A0-1	439-1006A0+1	431-007A0-1	43H007A1-1	43H008AB
ANALYTE		30	(USAGI)	0.000	(terifer)	(Uglet)	tugas)	(09/0)	(uoku)	(up/kg)	(99/kg)	(vg/kg)	(UGACO)
SEMIVOLATILE ORGANICS											••••••		
2-METHYLNAPHTHALENE	ND	ND		X(0)1(0)	2,822,00	ND	ND	ND	ND	ND	ND	ND	ND
BIS(2-ETHYLHEXYL)PHTHALATE	117(B)	17(B)	6.10E+04	28(B)	35(B)	16(B)		28(B)	2738(B)	15(B)	49(B)	56(B)	24(B)
BUTYLBENZYLPHTHALATE	ND	ND	7.80E+06	ND	ND	ND	55 (0)	ND	1735(B)	ND	ND	ND	18.00
DI-N-BUTYLPHTHALATE	807(B)	176(B)		209(B)	349(B)		175(B)	2520(B)	3354(B)	921(B)	323(B)	489(B)	232(B)
NAPHTHALENE	ND	ND		1,136.00	1,999,00	ND	ND	ND	ND	ND	ND	ND	ND
VOLATILE ORGANICS													
2-BUTANONE	ND	ND	5.20E+06	ND	ND	35.00		ND	ND	ND	ND	ND	ND
ACETONE	ND	ND	9.20E+06		ND	158.00	·	ND	ND	8100	ND	ND	ND
TETRACHLOROETHENE	ND	ND ND	2.20E+04	ND	ND	ND	32.00	ND	ND	ND	ND	ND	ND

Shaded concentrations indicate the value is above the background screening level (see text Section 5.4), except those analytes detected in the method blanks. Not all analytes tested for are listed; those not listed were not detected (ND). For a complete list of analytes requested and tested, see Appendix C.

B -- Analyte is found in the associated blank as well as in the sample.

PRG -- Preliminary remediation goal, 4th quarter, 1993, residential soil classification.

16-/

TABLE 7-20 Analytes Detected in Soil—Sites 44 and 45 Metals NWS Seal Beach, Seal Beach, California

	BACKEROUND					SAMPLE	AUMBERS		***************************************	
	45183440-1	PRG	44H001A0-1	44H002AD-1	45H001A0-1	45H001A0-2	45H001A1-2	45H002A0-1	45H002A0-2	45H003A0-1
ANALYTE	(mg/cg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
METALS						<u> </u>				
ALUMINUM	41,500.00	7.80E+04	8,390.00	8,860.00	9,760.00	22,000.00	21,900.00	12,600.00	17,500.00	5,600.00
ARSENIC	2.50	9.70E-01	2.5 (*)	1,60	6.7 (*)	14.2 (*)	8.9 (*)	5.9 (*)	**************************************	·
BARIUM	119.00	5.50E+03	52.50	55.20	102.00	135.00	105.00	193.00		
BERYLLIUM	1.50	4.00E-01	ND	ND	ND	0.90	0.93	ND	ND	ND
CADMIUM	ND ND	3.90E+01	ND	ND	ND	0.96	ND	0.88	0.90	ND
CALCIUM	11,200.00		4,130.00	6510 (*)	7,310.00	31,100.00	22,000.00	18,000.00	32,600.00	3,440.00
CHROMIUM	43.40	3.90E+02	13.00	19.60	30,10	28.70	28.80	38.70	23.10	13,40
COBALT	17.20		4.30	5.30	6.10	10.70	10.40	7.40	10.90	2.90
COPPER	41.80	2.90E+03	10.70	14 (*)	26.80	32.80	32.20	36.50	21.80	5.90
IRON	46,500.00	·	13,300.00	13,000.00	16,100.00	30,700.00	31,900.00	19,500.00	26,600.00	9,420.00
LEAD	12.10	5.00E+02	3.80	3.6 (*)	22.80	7.70	8.00	32.80	5.90	2.30
MAGNESIUM	17,300.00		3,860.00	4,990.00	5,830.00	12,200.00	12,200.00	6,600.00	10,400.00	2,750.00
MANGANESE	1,350.00	3.90E+02	170.00	203 (N)	230.00	583.00	456.00	299.00	575.00	132.00
MERCURY	ND	2.30E+02	ND	ND	0 17	ND	ND	0.2	ND	ND
NICKEL	28.00	1.60E+03	9.50	14.10	14.90	17.60	19.80	16.30	16.90	7.30
POTASSIUM	10,000.00		1,760.00	2,020.00	3,000.00	6,540.00	6,600.00	3,460.00	5,710.00	1,190.00
SODIUM	12,900.00		301.00	665.00	911.00	4,670.00	4,640.00	368.00	1,720.00	208.00
THALLIUM	1.30		0.87	0.61	0.87	1.80	1.70	1.10	1.40	0.78
VANADIUM	91.50	5.50E+02	29.90	24.50	34.50	60.00	60.70	41.40	55.70	19.60
ZINC	123.00	2.30E+04	34.10	38.90	79.10	81.30	82.80	99.60	69.00	23.20

Shaded concentrations indicate the value is above the background screening level (see text Section 5.4), except those analytes detected in the method blanks.

Not all analytes tested for are listed; those not listed were not detected (ND). For a complete list of analytes requested and tested, see Appendix C.

PRG -- Preliminary remediation goal, 4th quarter, 1993, residential soil classification.

^{* --} Duplicate analysis not within control limits.

N -- Spiked sample, recovery not within control limits.

TABLE 7-21 Analytes Detected in Soil—Sites 44 and 45 Volatile and Semivolatile Organics NWS Seal Beach, Seal Beach, California

	BACKGROUND					BAMPLE	HUMBERS			
ANALYTE	ASHDBAAG-1				45H001AD-1					
SEMIVOLATILE ORGANICS	(ug/kg)	(up/kg)	(GOIG)	(vokg)	(Ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
ANTHRACENE	ND		ND	ND	10.00	ND	ND	23.00	ND	ND
BENZO(A)PYRENE	ND		ND	ND	29.00	ND	ND	49.00	ND	ND
BENZO(B)FLUORANTHENE	ND		ND	ND	16.00	ND	ND	ND	ND	ND
BIS(2-ETHYLHEXYL)PHTHALATE	27(B)	6.10E+04	32(B)	ND	94(B)	73(B)	64(B)	135(B)	26(B)	39(B)
BUTYLBENZYLPHTHALATE	ND	7.80E+06	ND	ND	11.00	ND	ND	18.00	ND	ND
CHRYSENE	ND		ND	ND	ND	ND	ND	18.00	ND	ND
DI-N-BUTYLPHTHALATE	367(B)		199(B)	232(B)	L		173(B)	307(B)	153(B)	146(B)
FLUORANTHENE	ND		ND	ND	\$300	ND	ND	20.00	ND	ND
PHENANTHRENE	ND		ND	ND	ND	ND	ND	19.00		ND
PYRENE	ND	1.20E+06	ND	ND	(11.00)	ND	ND	27.00	ND	ND

Shaded concentrations indicate the value is above the background screening level (see text Section 5.4), except those analytes detected in the method blanks.

Not all analytes tested for are listed; those not listed were not detected (ND). For a complete list of analytes requested and tested, see Appendix C.

B -- Analyte is found in the associated blank as well as in the sample.

PRG -- Preliminary remediation goal, 4th quarter, 1993, residential soil classification.

7-10

TABLE 7-22 Analytes Detected in Groundwater - Sites 44 and 45 **NWS Seal Beach, California**

ANALYTE	MCL (EPA) (HB/I)	MCL (DHS) (µg/l)	44GP01A0-1 (µg/l)	a	44GP02A0-1 (µg/l)	٥	45GP01A0-1 (µg/l)	Q	45GP01A1-1 (µg/l)	Q
METALS						·				
ALUMINUM		1,000.00	306.00		ND		231.00		264.00	
ANTIMONY	6.00		99.40		ND		94.40		ND	
BARIUM	2,000.00	1,000.00	148.00		181.00	BE	160.00	 	176.00	
CALCIUM			1,620,000.00		971,000.00	E	1,220,000.00		1,220,000.00	
COBALT			165.00		10.30	В	12.60	1	12.60	 -
IRON			70,200.00		42,000.00		105.00		265.00	
LEAD		50.00	11.30	В	15.80	N	ND	†	ND	
MAGNESIUM			794,000.00		889,000.00	E	1,030,000.00	<u> </u>	1,020,000.00	
MANGANESE			11,300.00		7,150.00		1,100.00		1,110.00	
NICKEL	100.00		200.00		22.90	В	52.40		45.00	
POTASSIUM			898.00		417,000.00	E	272,000.00		276,000.00	
SILVER		50.00	10.90		ND		ND	<u> </u>	ND	
SODIUM			4,650,000.00		7,520,000.00		7,460,000.00		7,370,000.00	—
ZINC			21,500.00		245.00		17,600.00		20,300.00	
SEMIVOLATILE ORGANICS								<u> </u>		<u> </u>
2-METHYLNAPHTHALENE			ND		13.00		ND		ND	
NAPHTHALENE	0.20		ND		5.00	J	ND		ND	
PHENANTHRENE	0.20		ND		3.00	J	ND		ND	
VOLATILE ORGANICS									***************************************	<u> </u>
BENZENE	5.00	1.00	ND		4.00	J	ND		ND	
CARBON DISULFIDE			4.00	J	ND		ND	1	7.00	
METHYLENE CHLORIDE	5.00		6.00	В	ND		ND		3.00	JB

Not all analytes tested for are listed. Those not listed were not detected (ND). For a complete list of analytes requested and tested for, see Table 5-4 and Appendix C. Shaded concentrations indicate the value is above an MCL.

EPA - Environmental Protection Agency.
DHS - California Department of Health Services.

MCL - Maximum contaminant level.

Q - Qualifier.

B - Analyte is found in the associated blank as well as in the sample.

E - Concentrations exceeds the calibration range of the gas chromatography/mass spectroscopy (GCMS) instrument.

N - Indicates presumptive evidence of a compound.

J - Indicates an estimated value, less than the contract-required quantitation limit (CRQL) and greater than zero.

Table 4.2-2 Site 1 - Summary of Detected Analytes

Hetallic Compounds	B1-1-6 Soil MG/KG	B1-1-15 Soil MG/KG	B1-1-27 Soil MG/KG	B2-1-6 Soil MG/KG	B2-1-15 Soil MG/KG	B2-1-15D Soil HG/KG	B2-1-27 Soil MG/KG	B3-1-6 Soil MG/KG	B3-1-15 Soil MG/KG	B3-1-27 Soit MG/KG	B4-1-8 Soil MG/KG	B4-1-17 Soit MG/KG
Cadmium (Ed), total	10.7	6.1	3.7	8	5.7	5.1	6.4	15.2	8	3.9	7.5	6.6
Chromium (Cr), total	490	316	46.8	1050	485	134	110	426	491	267	224	91.1
Copper (Cu), total	96.9	63.6	15.6	566	274	38.7	60.5	1170	233	119	315	87.9
Nickel (Ni), total	147	135	123	162	131	106	141	449	11.9	89	135	74.5
Lead (Pb), total	28.4	13.3	5.1	105	19.3	4.6	10	309	18.3	13.9	21	10.6
Zinc (Zn), total	188	140	65.6	577	399	101	117	889	190	118	252	119
Total Petroleum Hydrocarbons (EPA Hethod 418.1)											*******	*******
ТРН	NR	NR	NR	NR	NR	26	NR	HR	35	NR	HR	6.7
Explasive Compounds												
Picramic Acid	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
· ····································	NR	NR	NR	NR	NR	NR.	NR.	HR	NR	NR	NR	NR

Blank indicates analyte not detected. NR indicates analysis not requested. D indicates duplicate

Table 4.2-2
Site 1 - Summary of Detected Analytes

Metallic Compounds	B4-1-29 Soil MG/KG	B4-1-29D Soil MG/KG	B5-1-9 Soll MG/KG	B5-1-18 Soil MG/KG	B5-1-30 Soll MG/KG	B6-1-8 Soil MG/KG	B6-1-17 Soil MG/KG	B6-1-29 Soil MG/KG	B7-1-B Soll MG/KG	B7-1-17 Soil MG/KG	B7-1-30 Soit MG/KG	B7-1-17D Soil MG/KG	BB-1-6 Soit MG/KG
Cadmium (Cd), total	3.7	5.6	4.5	8.2	5.2	5.5	6	6.2	8	5.8	5.5	8.2	4.1
Chromium (Cr), total	27.7	84.7	32.3	37.9	26.7	35.9	36.3	38	38. 3	32	34.1	35	17.4
Copper (Cu), total	14.4	110	21	26.5	15.7	29.5	30.6	29.3	29	25.7	23.3	27.8	8.5
Nickel (Ni), total	95.6	97.2	126	157	114	140	107	101	140	100	120	99.9	117
Lead (Pb), total	4	11.9	10.1	18.3	11.4	14.2	9.5	12	10.4	9.6	8	8.9	5.8
Zinc (Zn), total	54.6	107	91.7	116	73.6	106	90.4	114	101	92.3	91.4	99.2	56.4
Total Petroleum Hydrocarbons (EPA Method 418.1)													
ТРН	NR	NR	100	HR	NR	24	NR	NR		HR	NR	11	HR
Explosive Compounds						,							
	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	HR	

Blank indicates analyte not detected. NR indicates analysis not requested. D indicates duplicate

Table 4.2-2 Site 1 - Summary of Detected Analytes

Metallic Compounds	B8-1-17 Soil MG/KG	88-1-29 Soil MG/KG	B9-1-80 Soil MG/KG	89-1-8 Soil MG/KG	B9-1-17 Soil MG/KG	89-1-29 Soil MG/KG
	3.5	3.6	4.8	3.4	3.2	2.3
Chromium (Cr), total	22	18.1	22.4	18.7	21.2	19.9
Copper (Cu), total	10.9	6.1	12.9	8.9	12.6	8
Nickel (Ni), total	96	109	111	104	80.6	105
Lead (Pb), total	6	4.4	12.8	6.6	6.9	4.1
Zinc (Zn), total	62.3	62	66.6	58.6	60.2	56.2
Total Petroleum Hydrocarbons (EPA Method 418.1)						
ТР Н	HR		NR	HR	14	NR
Explosive Compounds						
Picramic Acid Ammornia, AS N	1.4			2.8 2.1	NR NR	NR NR

Blank indicates analyte not detected. NR indicates analysis not requested. D indicates duplicate

Table 4.4-3
Site 4 - Summary of Detected Analytes

emi-Volatile Organic Compounds EPA Method 8270)	B17-4-11 Soil MG/KG	B18-4-12 Soil MG/KG	B19-4-11 Soil MG/KG	B20-4-10 Soil MG/KG	B20-4-100 Soil MG/KG	B21-4-10 Soil MG/KG	B22-4-12 Soil MG/KG	B23-4-12 Soil MG/KG	B24-4-10 Soil MG/KG	B25-4-10 Soil MG/KG	B26-4-11 Soll MG/KG
Benzo(a)anthracene			* **								
4-Nitrosodiphenylamine			7.64 3.08								
Pyrene			3.00								
Metallic Compounds											
Arsenic (As), total	12	12	13	15	15	14	12	16	16	16	20
admium (Cd), total	3.65	3.66	3.32	3.42	3.56	3.51	3.12	4.4	4.32	4.31	4.46
hromium (Cr), total	16.6	17.6	18.6	75.7	18.9	22.1	20.4	20	23.2	22.9	25.1
copper (Cu), total	19.6	17.5	15.9	22.9	12.4	16	13.3	19.6	24.4	21.9	23.2
lercury (Hg), total									1.1 j		
lickel (Ni), total	12.7	13.7	11.7	17.2	12.8	12.6	12.1	14.3	17.2	17.6	21.5
ead (Pb), total	6.8	12.2	145	206	23.7	56.5	40.5	5.14	6.1	11.9	14.9
Zinc (Zn), total	55.2	56.5	74.2	152	59.6	90.9	60.4	63.3	63	66.3	77.3
Organochiorine Pesticide/ PCB Compounds (EPA Method 8080)											
Dieldrin	***********		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	0.005				
4,4'-DDE						0.97	0.030			0.009	0.045
4,4'-DDD				0.041			0.014				
4,4'-DDT						1.32	0.026			0.009	0.034
Dioxin, Furan Compounds	ng/g			ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	
PCDD's:		• • • • • • • • • •					* * * * * * * * * * * * * * * * * * * *			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
HxCDD									0.34		
HpCD0									0.48	2	
OCOD	0.066			5.5	0.89	1	0.42	0.013	1.7	4.4	
PCDF's:											
OCDF										0.20	

j indicates detected below detection limit.

D indicates duplicate.

Table 4.4-3
Site 4 - Summary of Detected Analytes

emi-Volatile Organic Compounds EPA Hethod 8270)	B27-4-12 Soil MG/KG	B28-4-12 Soil MG/KG	828-4-12D Soil MG/KG	B29-4-9 Soil MG/KG	B30-4-12 Soil MG/KG	B31-4-12 Soil MG/KG	B32-4-12 Soil MG/KG	B33-4-12 Soil MG/KG	B34-4-12 Soil MG/KG	B34-4-12D Soil MG/KG	835-4-12 Soil MG/KG
Benzo(a)anthracene N-Nitrosodiphenylamine Pyrene	2.49			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••		• • • • • • • • • • • • • • • • • • • •		••••••
Hetallic Compounds	*******	******		*********			********				
Arsenic (As), total	16	16	17	15	9.3 j	19	15	10	18	14	18
Cadmium (Cd), total	4.51	4.57	4.58	4.42	3.34	4.45	4.14	3.29	4.25	4.53	3.78
Chromium (Cr), total	99.9	21.7	23.3	27.1	22.8	53.7	19.3	15.8	42.4	20.6	20
Copper (Cu), total	24.7	21.8	22.6	18.7	14.5	23.1	14.9	12.8	24.5	19.9	21.2
Mercury (Hg), total	1.1 j			1.1 j	1.9 }	1.1 j	1.4]				
Nickel (Ni), total	21.3	16.1	16.9	16.6	12.9	17.1	13.4	10.4	19.2	14.8	16.1
Lead (Pb), total	77.7	8.9	9.47	21.1	29.1	45.7	4.4	3.3	122	8.48	5.99
Zinc (Zn), total	137	81.2	81.7	76.9	75.7	103	66.4	49.4	111	75.7	57.8
Organochlorine Pesticide/ PCB Compounds (EPA Method 8080)											
Dieldrin											
4,4'-DDE		0.006		0.046	0.82	0.125	0.037		0.011	0.006	
4,4'-DDD											
4,41-001	0.081			0.084	1.28	0.161			0.011	0.006	
Dioxin, Furan Compounds	* * * * * * * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • • •	ng/g	ng/g		ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
PCDD's:		• • • • • • • • • • • • • • • • • • • •									
HxCOD											
HpC0D					4.1						
OCDD			0.012	0.18		1.8	0.019	0.0053	3.0	0.037	0.76
PCDF's:											
OCDF											

j indicates detected below detection lim

D indicates duplicate.

Table 4.4-3
Site 4 - Summary of Detected Analytes

Semi-Volatile Organic Compounds (EPA Method 8270)	B36-4-12 Soil MG/KG	Soil
Benzo(a)anthracene N-Nitrosodiphenylamine Pyrene	•	
Metallic Compounds		
Arsenic (As), total Cadmium (Cd), total Chromium (Cr), total Copper (Cu), total Mercury (Hg), total Nickel (Ni), total Lead (Pb), total Zinc (Zn), total Organochlorine Pesticide/	13 3.86 19.5 18.6 13.5 9.08 64.8	20 5.07 23.1 22.4
PCB Compounds (EPA Method 8080) Dieldrin 4,4'-DDE	0.034	
4,4'-DDD 4,4'-DDT	0.038	
Dioxin, Furan Compounds		ng/g
PCOD's: HxCDD HpCDD OCDD PCDF's: OCOF		0.72 5.0

note:

Table 4.6-4
Site 7 - Summary of Detected Analytes
Soil Samples

Volatile Organic Compounds (EPA Method 8240)	BLANK Soil ug/kg	W41-7-1 Soil ug/kg	W41-7-5 Soil ug/kg	W41-7-5D Soil ug/kg	W41-7-10 Soil ug/kg	W42-7-1 Soil ug/kg	W42-7-5 Soil ug/kg	W42-7-10 Soil ug/kg	W43-7-1 Soil ug/kg	W43-7-5 Soil Ug/kg	W43-7-10 Soft Ug/kg	W43-7-100 Soil ug/kg
Methylene chloride Toiuene	8	600 b	580 b	400 b	510 Ь	380 Ь	350 b	310 Ь	190	·	9.3	34
Metallic Compounds		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Silver (Ag), total												5.6
Arsenic (As), total		2.6	4.4	2.9	3.6	15.5	1.9	1.5	NR	NR	NR	NR
Cadmium (Cd), total						0.7			NR	NR	NR	NR
Chromium (Cr), total		17.5	32.3	28.9	24.6	86.6	11.8	13.6	24.3	26	53.4	37.2
Copper (Cu), total		. 26	35.9	64.2	26.7	68.8	9.6	15.2	NR	NR	NR	NR
Mercury (Hg), total		0.15		0.15		0.91			0.5	0.67	0.58	0.5
Nickel (Ni), total		12	21	21	12	21	7	- 11	19.1	19.8	27.4	16.1
Lead (Pb), total		28	21	19	14	2080	10	. 9	5.7	2.8	6.6	5.
Zinc (2m), total		126	94	92	65	437	43	72	85.4	66.6	112	88.
Semi-Volatile Organic Compounds (EPA Method 8270)		ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/k g	ug/kg	ug/kg
Chausana									160			
Chrysene Di-n-butyl phthalate									170			
fluoranthene									120			
4-chloro-3-methylphenol												

Hote:

Blank indicates analyte not detected. NR indicates analysis not requested.

b indicates present in blank.

D indicates duplicate.

Table 4.6-4 (continued)
Site 7 - Summary of Detected Analytes
Soil Samples

olatile Organic Compounds (EPA Method 8240)	W44-7-1 Soil ug/kg	W44-7-5 Soil ug/kg	W44-7-10 Soil ug/kg	W45-7-1 Soil ug/kg	W45-7-5 Soil ug/kg	W45-7-10 Soil ug/kg	W45-7-10D Soil ug/kg	W46-7-1 Soil ug/kg	W46-7-5 Soil ug/kg	W46-7-10 Soil ug/kg	S47-7-6 Soil ug/kg	S47-7-1 Soil ug/kg
Methylene chloride Foluene	38	65	17	460	120	260	310	38	18	13	550	. 4
Metallic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Silver (Ag), total	2.6	3.4	3.3									
Arsenic (As), total	NR	NR	NR	NR	NR	NR	NR	NR	NR	HR	NR	NR
Cadmium (Cd), total	HR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Chromium (Cr), total	28.6	25.8	51.7	24.1	33.2	36.4	31.7	35.2	28.2	41	35.1	i
Copper (Cu), total	NR	NR	NR	NR	NR	HR	NR	NR	NR .	NR	HR	HR
Mercury (Hg), total	0.39	0.5	0.59	0.5	0.77	1.5	1.5					
Nickel (Ni), total	15.9	13.7	50.8	15.6	20.6	22.3	19.1	18.5	20.2	30.7	23.6	17
Lead (Pb), total	13.1	2.8	9.8	6.4	6.1	9.8	8.2	4.7	5.1	6.8	75	3
Zinc (Zn), total	74.3	114	134	84.6	92.4	110	93.9	92.4	86.5	104	115	77
Semi-Volatile Organic Compounds (EPA Method 8270)	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/k g	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg

Chrysene

Di-n-butyl phthalate

Fluoranthene

4-chloro-3-methylphenol

120

Note:

Blank indicates analyte not detected. NR indicates analysis not requested.

b indicates present in blank.

Table 4.6-4 (continued)
Site 7 - Summary of Detected Analytes
Soil Samples

Volatile Organic Compounds (EPA Hethod 8240)	\$47-7-27 \$oil ug/kg	\$47-7-27D \$0il ug/kg	S48-7-6 Soil ug/kg	\$48-7-15 \$oil ug/kg	\$48-7-27 \$oil ug/kg	\$49-7-6 \$oil ug/kg	\$49-7-15 Soil ug/kg	\$49-7-27 \$oil ug/kg
Methylene chloride Toluene	140	79	480	340	300	670	1200	160
						•••••		
Metallic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Silver (Ag), total		4.3						
Arsenic (As), total	NR	NR	NR	NR	NR	NR	NR	NR
Cadmium (Cd), total	NR ·	NR	NR	NR	NR	NR	NR	NR
Chromium (Cr), total	26.7	27.9	43.4	27.8	44.1	34.4	32.6	25.2
Copper (Cu), total	NR	NR	NR	NR	NR	NR	NR	NR
Mercury (Hg), total								
Nickel (Ni), total	20.9	27	33.9	24.1	29.4	29	28.6	19.5
Lead (Pb), total	3.5	2.4	24.1	3.7	7.9	28. 9	12.7	4.3
Zinc (Zn), total	63.3	76.8	156	78.1	120	106	96.7	81.2
Semi-Volatile Organic Compounds (EPA Method 8270)	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg

Chrysene

Di-n-butyl phthalate

Fluoranthene

4-chtoro-3-methylphenol

Note:

Blank indicates analyte not detected.

NR indicates analysis not requested.

b indicates present in blank.

Table 4.6-4
Site 7 - Summary of Detected Analytes
Water Samples

/olatile Organic Compounds (EPA Method 624)	BLANK Water ug/l	W41-7-W Water ug/l	W41-7-WD Water ug/l	W42-7-W Water ug/l	W43-7-W Water ug/l	W44-7-W Water ug/l	W45-7-W Water ug/l	W46-7-W Water ug/l	BLANK Water ug/l	S47-7-W Water ug/l	S48-7-W Water ug/l	S48-7-WD Water ug/l
Methylene chloride Acetone Carbon disulfide 4-Methyl-2-pentanone		99 9 j	130 10	1 j					8	1 J 6 J	•	
Semi-Valatile Organic Compounds (EPA Method 625)												
Benzo(a)anthracene Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Hexachlorobenzene Phenanthrene	7	3 j		2 ji		7 j	•••••		•••••	2		
Pyrene N-nitrosodiphenylamine 4-bromophenyl-phenylether				2 j		9 j						
Metallic Compounds										********		
Silver (Ag), total Chromium (Cr), total Hercury (Hg), total		78.3 8.1	112	136	252 77.2	402	194	188		65.3	47.8	72.3
Hicket (Ni), total Lead (Pb), total		67	86.5	89.3	475	270	168	122		82	74.2	63.3
Zinc (Zn), total		194	180	261	132	932	438	403			118	23

J = present below detection limit

b = present in blank

Volatile Organic Compounds (EPA Method 624)	S49-7-W Water ug/l
Methylene chloride Acetone Carbon disulfide 4-Methyl-2-pentanone	2 jb 3 jb
Semi-Volatile Organic Compounds (EPA Method 625)	
Benzo(a)anthracene Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Hexachlorobenzene Phenanthrene Pyrene N-nitrosodiphenylamine 4-bromophenyl-phenylether	
Metallic Compounds	• • • • • • • • • • • • • • • • • • • •
Silver (Ag), total Chromium (Cr), total Mercury (Hg), total	69.1
Nickel (Ni), total Lead (Pb), total Zinc (Zn), total	104

j = present below detection limit

b = present in blank

Aromatic Volatile Organic Compounds (EPA Method 8020)	\$58-22-6 \$oil MG/KG	\$58-22-15 \$ofl MG/KG	S58-22-35 Soil MG/KG	S59-22-6 Soil MG/KG	\$59-22-15 \$oil MG/KG	S59-22 -15D Soil MG/KG	S59-22-27 Soil MG/KG	S59-22-35 Soil MG/KG	S60-22-6 Soil MG/KG	\$60-22-16 \$011 MG/KG
Toluene	0.21			0.076	0.13		0.13			0.10
Metallic Compounds					•••••					· · · · · · · · · · · · · · · · · · ·
Arsenic (As), total										38
Chromium (Cr), total	14	78	10	6.8	31	29	32		38	19
Nickel (Ni), total Vanadium (V), total	20 42	49 183	24	8.6 16	22 69	24 66	20 68		35 68	42
				• • • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			• • • • • • • • • • • • • • • • • • • •	
Total Petroleum Hydrocarbons (EPA Hethod 418.1)										

Blank indicates analyte not dectected.

Table 4.9-2 Site 22 - Summary of Detected Analytes Soil Samples

Aromatic Volatile Organic Compounds (EPA Method 8020)	\$60-22-27 \$61 MG/KG	\$60-22-27D \$0il MG/KG	s61-22-15 soil MG/KG	\$61-22-27 \$61 MG/KG	S61-22-34 Soft MG/KG	S62-22-6 Soil MG/KG	\$62-22-17 \$0il HG/KG	\$62-22-27 \$61 MG/KG	S63-22-7 Soil MG/KG	\$63-22-17 \$011 MG/KG
î o l uene		0.47				1.1			0.71	0.38
detailic Compounds										• • • • • • • • • • • • • • • • • • • •
Arsenic (As), total		16					10		11	27
Chromium (Cr), total	41	32	46	33	35	37	38	31	40	38
Hickel (Ni), total	23	19	31	23	26	28	10	27	22	26
Venadium (V), total	86	71	81	75	76	28	19	63	71	76
Total Petroleum Hydrocarbons (EPA Method 418.1)	· · · · · · · · · · · · · · · · · · ·			•		******	•••••	·		

TPH

Note:

Blank indicates analyte not dectected.

Table 4.9-2 Site 22 - Summary of Detected Analytes Soil Samples

MG/KG	MG/KG	Soil MG/KG	Soil MG/KG	Soil MG/KG	Soil MG/KG	Soil MG/KG	Soil MG/KG	Soil MG/KG	Soil MG/KG
0.79									
						• • • • • • • • • • • • • • • • • • • •			••••••
20	15				11	12	16	16	11
									34
18 62	76	102	74	79	81	65	72 72	25 75	25 72
	•••••				· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •			**********
	0.79 20 29 18 62	0.79 20 15 29 37 18 26 62 76	0.79 20 15 29 37 46 18 26 27 62 76 102	0.79 20 15 29 37 46 36 18 26 27 24 62 76 102 74	0.79 20 15 29 37 46 36 39 18 26 27 24 28 62 76 102 74 79	0.79 20 15 11 29 37 46 36 39 42 18 26 27 24 28 27	0.79 20 15 11 12 29 37 46 36 39 42 33 18 26 27 24 28 27 20 62 76 102 74 79 81 65	20 15 11 12 16 29 37 46 36 39 42 33 36 18 26 27 24 28 27 20 26 62 76 102 74 79 81 65 72	0.79 20 15 11 12 16 16 29 37 46 36 39 42 33 36 39 18 26 27 24 28 27 20 26 25 62 76 102 74 79 81 65 72 75

Blank indicates analyte not dectected.

Table 4.9-2 Site 22 - Summary of Detected Analytes Soil Samples S66-22-27 \$67-22-6 \$67-22-16 \$67-22-38 \$67-22-380 \$68-22-6 \$68-22-15 \$68-22-27 \$69-22-6 \$69-22-20 Aromatic Volatile Organic Compounds Soil Soil Soil Soil Soil Soil Soil Soil Soil (EPA Method 8020) Soil MG/KG 0.20 0.19 Toluene Metallic Compounds 30 22 40 Arsenic (As), total 39 55 31 71 63 73 Chromium (Cr), total 35 22 40 48 52 26 Nickel (Ni), total 79 81 45 142 124 62 Vanadium (V), total Total Petroleum Hydrocarbons (EPA Method 418.1)

37

86

42

95

Note:

TPH

Blank indicates analyte not dectected.

45

Table 4.9-2 Site 22 - Summary of Detected Analytes Soil Samples

Commatic Volatile Organic Compounds (EPA Method 8020)	\$69-22-32 \$oil MG/KG	S70-22-8 Soil MG/KG	\$70-22-16 \$0il MG/KG	\$70-22-36 \$611 MG/KG	\$71-22-6 Soil MG/KG	\$71-22-15 \$011 MG/KG	\$71-22-27 \$011 MG/KG	\$72-22-6 Soil MG/KG	\$72-22-15 \$611 MG/KG	\$72-22-150 \$011 MG/KG
Toluene		0.83				0.38	•	0.23		0.047
Metallic Compounds				•••••		- • • • • • • • • • • • • • • • • • • •				**********
Arsenic (As), total					35					
Chromium (Cr), total	55	78	55	65	74	43	51	25	25	22
Nickel (Ni), total	21			30	44	18	20	14	14	12
Vanadium (V), total	70	61	44	97	95	57	71	49	49	42
Total Petroleum Hydrocarbons (EPA Method 418.1)		••••••		******		••••••••••••••••••••••••••••••••••••••				· • • • • • • • • • • • • • • • • • • •
				******	57	79	61	******		• • • • • • • • • • • • • • • • • • • •

Blank indicates analyte not dectected.

Table 4.9-2 Site 22 - Summary of Detected Analytes Soil Samples

•		•					·			
romatic Volatile Organic Compounds EPA Method 8020)	\$72-22-27 \$oil MG/KG	\$73-22-7 \$oil MG/KG	\$74-22-5 \$011 MG/KG	\$75-22-5 \$oil MG/KG	\$76-22-5 \$oil MG/KG	\$76-22-50 \$611 MG/KG	S81-22-6 Soil MG/KG	S82-22-6 Soil MG/KG	\$82-22-18 \$611 MG/KG	\$82-22-3 \$611 MG/KG
'otuen e				0.28	1.8	0.071	0.085			
tetallic Compounds										
Arsenic (As), total	8.5	31	33	30	55	9.5				
Chromium (Cr), total	23	54	54	.70	44	48	33	29	25	i
Nickel (Ni), total	16	27	23	23	27	30	13	25		
Vanadium (V), total	48	58	44	46	45	61	44	56	71	
Total Petroleum Hydrocarbons (EPA Method 418.1)	••••••	•••••			•••••			*********	-	
трн		84	3600	279	467	143	107	100	84	******

Blank indicates analyte not dectected.

Table 4.9-2 Site 22 - Summary of Detected Analytes Bioaccumulation Samples .

/olatile Organic Compounds (EPA Method 8240)	\$58-22-A	\$58-22-B	\$59-22-A	\$60-22-A1	\$61-22-A1	\$62-22-A	\$63-22-A1	\$64-22-A	\$65-22-A
	BIOACCUM	BIOACCUM	BIOACCUM	BIOACCUM	BIOACCUM	BIOACCUM	BIOACCUM	BIOACCUM	BIOACCUM
	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Methylene Chloride	75 j	100 j	90 j	79 j	80	j 70 j	50 j	90 j	110 j
Acetone	930 b		950 b		450	jb	380 j	b 200 j	b 290 j
2-Butanone	450 j								
4-Methyl-2-pentanone									
2-Hexanone			200 j						
foluene	50 j	120 j	450					75 j	
Chlorobenzene			. .						
Semi-Volatile Organic Composunds									
(EPA Method 8270)	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Benzoic Acid	•								
Benzyl alcohol									
Bis(2-ethylhexyl)phthalate							260 j	İ	
Indeno(1,2,3-cd)pyrene									
4-Methylphenol	440]		180 }						
N-Nitrosodiphenylamine	74]								70
Pentachlorophenol					700	j			
Phenol	92 j								
Metallic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic (As), total	0.34	0.045	0.51	0.56	0.53	0.46	0.64	0.73	
Chromium (Cr), total	1.6	3.9	1.5	2.8	1.3	2.9	_ 6	4.7	4.9
Hercury (Hg), total	1	0.63				0.5		0.12	0.12
Nickel (Ni), total	1.8	29.1	1.4	16.4	1.9	15.8	29.9	20.8	30.5
Vanadium (V), total	1.4	1.2	1.1		0.98		1.8	2.3	2.7

j = present below detection limit

b = present in blank

Table 4.9-2 (continued)
Site 22 - Summary of Detected Analytes
Bioaccumulation Samples

Volatile Organic Compounds (EPA Method 8240)	S66-22-A	S66-22-82	S67-22-A1	\$67-22-A3	\$68-22-A1	\$71-22-A1	\$72-22-A1	\$72-22-82	\$72-22-C2
	B10ACCUM ug/kg	BIOACCUM ug/kg	B10ACCUM Ug/kg	B10ACCUM ug/kg	B10ACCUM ug/kg	Bloaccum ug/kg	B10ACCUM ug/kg	BIOACCUM ug/kg	B10ACCUM ug/kg
Hethylene Chloride	150	120 j	59 j	130 j	180 j	130 j	50 j	850 j	80
Acetone 2-Butanone	310	jb 980 b		350]	ь 800 ь	1200 b	390 J	b 190 jt	550
4-Hethyl-2-pentanone		630							
2-Hexanone									
Toluene Chlorobenzene	95) 					460	70 j	65
Semi-Volatile Organic Compoounds (EPA Method 8270)	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/k g	ug/kg	ug/kg	ug/kg
Benzoic Acid			•		****	• • • • • • • • • • • • • • •	• • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
Benzyl alcohol Bis(2-ethylhexyl)phthalate						310 J		280 i	500
Indeno(1,2,3-cd)pyrene						5.0 ,	110 j		500
4-Methylphenol			•				-		
N-Nitrosodiphenylamine Pentachlorophenol					1200 j		99]	160 j	170
Phenol				•	1200 j	76 j			
Metallic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k g	mg/kg
Arsenic (As), total	0.51	0.26	0.61	0.99	0.41	0.61	0.49	0.46	0.43
Chromium (Cr), total	4	5.7	3.8	0.27	3.3	2.7	3.7	0.82	1.3
Mercury (Hg), total	0.37	0.64		0.48		0.12	0.7		0.61
Nickel (Ni), total	21.4	25.5	22.1		22.4	18.7	23.7	2.7	2.9
Vanadium (V), total	, 1.5	0.97	1.5		1.1		1.5		0.96

Blank indicates analyte not detected.

j = present below detection limit

b = present in blank

Table 4.9-2 (continued) Site 22 - Summary of Detected Analytes

Bioaccumulation Samples								
Volatile Organic Compounds (EPA Method 8240)	S72-22-D3 BIDACCUM ug/kg	BLANK FOR \$64-22-A ug/kg	· · · · · ·	=	BLANK FOR \$62-22-A,\$62-22-B2 \$72-22-A1,\$72-22-B2 \$72-22-C2 ug/kg		BLANK FOR \$60-22-A1,\$61-22-A1 \$67-22-A1,\$67-22-A3 \$68-22-A1,\$71-22-A1 ug/kg	BLANK FOR \$72-22-D3 ug/kg
Methylene Chloride Acetone 2-Butanone 4-Methyl-2-pentanone 2-Hexanone Toluene Chlorobenzene	80 j 1100 b		2 j	8 j	2 j	2 7		8 j
Semi-Volatile Organic Compoounds (EPA Method 8270)	ug/kg							
Benzoic Acid Benzyl alcohol Bis(2-ethylhexyl)phthalate indeno(1,2,3-cd)pyrene 4-Methylphenol N-Nitrosodiphenylamine Pentachlorophenol Phenol	410 j 140 j 190 j							
Metallic Compounds	mg/kg							
Arsenic (As), total Chromium (Cr), total Mercury (Hg), total Nickel (Ni), total	0.88 0.39	••						

8 j

Note:

Blank indicates analyte not detected.

j = present below detection limit

b = present in blank

Vanadium (V), total